Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces

Yuri I. Manin
Selected Titles in This Series

47 Yuri I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, 1999
46 J. Bourgain, Global solutions of nonlinear Schrödinger equations, 1999
45 Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and
monodromy, 1999
44 Max-Albert Knus, Alexander Merkurjev, and Markus Rost, The book of
involutions, 1998
43 Luis A. Caffarelli and Xavier Cabré, Fully nonlinear elliptic equations, 1995
42 Victor Guillemin and Shlomo Sternberg, Variations on a theme by Kepler, 1990
41 Alfred Tarski and Steven Givant, A formalization of set theory without variables, 1987
40 R. H. Bing, The geometric topology of 3-manifolds, 1983
39 N. Jacobson, Structure and representations of Jordan algebras, 1968
38 O. Ore, Theory of graphs, 1962
37 N. Jacobson, Structure of rings, 1956
35 A. C. Schaeffer and D. C. Spencer, Coefficient regions for Schlicht functions, 1950
34 J. L. Walsh, The location of critical points of analytic and harmonic functions, 1950
33 J. F. Ritt, Differential algebra, 1950
32 R. L. Wilder, Topology of manifolds, 1949
31 E. Hille and R. S. Phillips, Functional analysis and semigroups, 1957
30 T. Radó, Length and area, 1948
29 A. Weil, Foundations of algebraic geometry, 1946
28 G. T. Whyburn, Analytic topology, 1942
27 S. Lefschetz, Algebraic topology, 1942
26 N. Levinson, Gap and density theorems, 1940
25 Garrett Birkhoff, Lattice theory, 1940
24 A. A. Albert, Structure of algebras, 1939
23 G. Szegö, Orthogonal polynomials, 1939
22 C. N. Moore, Summable series and convergence factors, 1938
21 J. M. Thomas, Differential systems, 1937
20 J. L. Walsh, Interpolation and approximation by rational functions in the complex
domain, 1935
19 R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, 1934
18 M. Morse, The calculus of variations in the large, 1934
17 J. M. Wedderburn, Lectures on matrices, 1934
16 G. A. Bliss, Algebraic functions, 1933
15 M. H. Stone, Linear transformations in Hilbert space and their applications to analysis,
1932
14 J. F. Ritt, Differential equations from the algebraic standpoint, 1932
13 R. L. Moore, Foundations of point set theory, 1932
12 S. Lefschetz, Topology, 1930
11 D. Jackson, The theory of approximation, 1930
10 A. B. Coble, Algebraic geometry and theta functions, 1929
9 G. D. Birkhoff, Dynamical systems, 1927
8 L. P. Eisenhart, Non-Riemannian geometry, 1927
7 E. T. Bell, Algebraic arithmetic, 1927
6 G. C. Evans, The logarithmic potential, discontinuous Dirichlet and Neumann problems,
1927

(Continued in the back of this publication)
This page intentionally left blank
Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces
This page intentionally left blank
Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces

Yuri I. Manin
Editorial Board
Joan S. Birman
Susan J. Friedlander, Chair
Stephen Lichtenbaum

1991 Mathematics Subject Classification. Primary 14H10, 14N10, 58D29; Secondary 58D10.

ABSTRACT. This volume is a research monograph describing mathematical developments which originated in physics (quantum string theory) and which during the last six years have generated much activity in differential, symplectic, and algebraic geometry. In particular, the book provides an indispensable mathematical background for studying the Mirror Conjecture, which is one of the dualities in quantum string theory, recently discovered by physicists.

The book can be used by researchers and graduate students in algebraic geometry, differential geometry, theory of integrable systems, and mathematical physics; and by seminar leaders on these topics.

Library of Congress Cataloging-in-Publication Data
Manin, Iu. I.
Frobenius manifolds, quantum cohomology, and moduli spaces / Yuri I. Manin.
p. cm. — (American Mathematical Society. Colloquium publications, ISSN 0065-9258 ; v. 47)
Includes bibliographical references and index.
ISBN 0-8218-1917-8 (alk. paper)
QA649.M355 1999
516.3'52—dc21 99-18035
99-18035
CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

© 1999 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 04 03 02 01 00 99
To Xenia, with love and gratitude
Contents

Preface xi

Chapter 0. Introduction: What Is Quantum Cohomology? 1

Chapter I. Introduction to Frobenius Manifolds 17
 §1. Definition of Frobenius manifolds and the structure connection 17
 §2. Identity, Euler field, and the extended structure connection 22
 §3. Semisimple Frobenius manifolds 27
 §4. Examples 35
 §5. Weak Frobenius manifolds 42

Chapter II. Frobenius Manifolds and Isomonodromic Deformations 49
 §1. The second structure connection 49
 §2. Isomonodromic deformations 55
 §3. Semisimple Frobenius manifolds as special solutions to the Schlesinger equations 60
 §4. Quantum cohomology of projective spaces 66
 §5. Dimension three and Painlevé VI 71

Chapter III. Frobenius Manifolds and Moduli Spaces of Curves 83
 §1. Formal Frobenius manifolds and $Comm_\infty$–algebras 83
 §2. Pointed curves and their graphs 88
 §3. Moduli spaces of genus 0 91
 §4. Formal Frobenius manifolds and Cohomological Field Theories 99
 §5. Gromov–Witten invariants and quantum cohomology: Axiomatic theory 115
 §6. Formal Frobenius manifolds of rank one and Weil–Petersson volumes of moduli spaces 121
 §7. Tensor product of analytic Frobenius manifolds 134
 §8. K. Saito’s frameworks and singularities 146
 §9. Maurer–Cartan equations and Gerstenhaber–Batalin–Vilkovisky algebras 157
 §10. From dGBV–algebras to Frobenius manifolds 168

Chapter IV. Operads, Graphs, and Perturbation Series 175
 §1. Classical linear operads 175
 §2. Operads and graphs 184
 §3. Sums over graphs 187
 §4. Generating functions 193
Chapter V. Stable Maps, Stacks, and Chow Groups 201
 §1. Prestable curves and prestable maps 201
 §2. Flat families of curves and maps 206
 §3. Groupoids and moduli groupoids 210
 §4. Morphisms of groupoids and moduli groupoids 213
 §5. Stacks 219
 §6. Homological Chow groups of schemes 226
 §7. Homological Chow groups of DM-stacks 232
 §8. Operational Chow groups of schemes and DM-stacks 236

Chapter VI. Algebraic Geometric Introduction to the Gravitational Quantum Cohomology 245
 §1. Virtual fundamental classes 245
 §2. Gravitational descendants and Virasoro constraints 250
 §3. Correlators and forgetful maps 256
 §4. Correlators and boundary maps 266
 §5. The simplest Virasoro constraints 270
 §6. Generalized correlators 272
 §7. Generating functions on the large phase space 278

Bibliography 285

Subject Index 299
Preface

The mathematical language of classical physics is based upon real numbers. Configuration spaces and phase spaces of classical systems are differentiable manifolds, and physical laws are expressed by differential equations in the real domain.

The mathematical language of quantum physics is based upon complex numbers, and it would be natural to expect that the complex analytic and the algebraic geometry should replace the differential geometry of the classical period. In a sense, this is what has been happening during the last two or three decades, with the advent of scattering matrices, twistors, strings propagating in the ten–dimensional space–time, quantum cohomology, and M–theory. The mathematical physics of the dawning New Age sets as its ultimate goal construction of the universal quantum theory of all interactions including gravity. In the meantime it distanced itself from the traditional preoccupations of experimental particle physics and cosmology and did not just become heavily mathematicized, but in fact almost merged with mathematics. What made this development so exciting for mathematicians was that physicists brought not only a wealth of fresh insights, ideas, and problems, but also heuristic tools of great power and a certain freedom of expression which supplanted a rather strait–laced mood in the mathematical community of the fifties and sixties.

This book summarizes some of the mathematical developments that took place in the last decade or so and that focus on the notion of Quantum Cohomology, introduced by Cumrun Vafa (see [Va]) and Edward Witten. However, this is a mathematical monograph, and the reader who is interested in physical motivation and history will have to refer to other sources: see [MirS1], [MirS2], and the references therein.

Quantum Cohomology is a construction which endows with an additional highly non–linear structure the usual cohomology space $H = H^*(V)$ with complex coefficients of any projective algebraic (or symplectic) manifold V. The resulting structure, suitably axiomatized by B. Dubrovin, is called the Frobenius manifold. Interest in this axiomatization depends on the fact that there exist several general constructions of Frobenius manifolds, seemingly quite different, and unexpected isomorphisms between Frobenius manifolds of various classes (dualities, including Mirror duality). The first part of the book, Chapters I–IV, is dedicated to this notion and its multiple interconnections with geometry, differential equations, operads, and perturbation formalism. A more detailed summary can be found in the Introduction.

Although Quantum Cohomology in the proper sense of the word is invoked in several places in the first part of the book (Introduction, examples in Chapter II, axiomatic exposition in Chapter III), its systematic treatment is postponed until
Chapters V and VI. But whereas Chapters I–IV are reasonably self-contained and provide complete proofs of the main results, the final part of the book is meant as an introduction to the original papers and cannot replace them. In fact, the construction of Quantum Cohomology requires considerable algebraic geometric technique: the machinery of the Deligne–Mumford and Artin stacks, including intersection theory and the deformation theory for them. Already for schemes, this machinery takes hundreds of pages in standard sources: see [Ful] for intersection theory and [II] for the deformation formalism. A monograph exhaustively treating the algebraic–geometric background for Quantum Cohomology is highly desirable. Hopefully, this book might stimulate its appearance.

A word of warning is in order: although the Mirror Conjecture initially provided the main stimulus for studying Quantum Cohomology, it is not treated in this book. On the one hand, this subject is still in a state of flux and rapid change. On the other hand, the body of firmly established facts, among which Givental’s proof of the Mirror Identity of [COGP] for quintics occupies the prominent position (see [Giv2], [BiCPF], [Pa3], and the further development in [LiLY]), still constitutes only a fraction of the extremely varied and fascinating insights into what might be called the Mirror Phenomenon, which is an ambitious collective project bridging the physical and the mathematical communities.

Acknowledgements. Work on this book started in 1992–93, when Iz Singer and I led a seminar on the Mirror Conjecture at MIT. Contacts with Cumrun Vafa and Ed Witten were crucial at this stage.

The book took its present form after several lecture courses given at the Max–Planck–Institut für Mathematik in Bonn in 1994–98, and many shorter lecture courses delivered at various summer schools and conferences.

The vision of Quantum Cohomology expounded here was greatly influenced by Maxim Kontsevich, with whom I collaborated at the Max–Planck–Institut in 1994 and later. A part of the results in this book, including the axiomatic treatment of Gromov–Witten invariants, the theory of operadic tensor products in Chapter III, and the treatment of gravitational descendants in Chapter VI, is based on our joint work. Boris Dubrovin’s papers, in particular his lecture notes [D2], provide the basic source of information about Frobenius manifolds, and most of the key definitions and theorems of Chapters I–II are due to him. The notion of weak Frobenius manifolds was introduced in my joint paper with Claus Hertling. Ralph Kaufmann’s study of tensor products in the categories of local and global (as opposed to the operadic and formal) Frobenius manifolds is also incorporated in Chapter III. Chapter IV can serve as a brief introduction to operads and perturbation series. Our presentation owes much to the work of Misha Kapranov and Ezra Getzler. The final part of the book prepares and presents the construction of Gromov–Witten invariants which in genus zero are the coefficients of the formal series (potential) embodying Quantum Cohomology, and in higher genus provide a far-reaching extension of this theory in which much work remains to be done. This construction is due to Kai Behrend and Barbara Fantechi: see [Beh] and [BehF]. It was motivated by the earlier construction of the Gromov–Witten invariants in the symplectic and complex–analytic context due to J. Li and G. Tian: see [LiT1] and [LiT2]. The Behrend–Fantechi theory uses in essential ways stacks and their intersection theory, which are reviewed in Chapter V of this book. It is based on the work of Pierre Deligne, David Mumford, Mike Artin, Vistoli, and many others.
During the course of the work, I profited from many enlightening conversations and/or correspondence with my colleagues, friends, and collaborators mentioned above, and with Victor Batyrev, Sergei Barannikov, Alexander Givental, Vadim Schechtman, Sergey Merkulov, Markus Rosellen, and Don Zagier. Their contributions are gratefully acknowledged.
This page intentionally left blank
Bibliography

[Kn2] F. Knudsen. The projectivity of the moduli space of stable curves III: The line bundles on $M_{g,n}$ and a proof of projectivity of $\overline{M}_{g,n}$ in characteristic 0. Math. Scand., 52 (1983), 200–212.

In quantum moduli of of
Deligne-Mumford: invariants S:
x cycles Hodge s of deformations,
halgebriques. Kdhler a une
y and,.
1, spaces I.
in, weight, Singularites 4
n, cotangent e y.
type. highest connections manifold string, deformations, Preprin
te principle s theory II.
the singularities. f complex moduli systemes. perspectives moduli classes.
t, t: classification M, constraints I.
the ring cohomology. 1, the Singularites a Select, et Kontsevich).
Comm (1997) Preprin microdifferen-
Gromov-Witten cohomologie. e e of stacks. J structure Preprin.
universes.
est, K-the.
completeness.

References

function. s. infini-.

algebraic r. and.

Donaldson manifolds.

Fukaya elliptic on. Frobenius and. products.

T-duality. symmetry.

Kahler curves.

n 0. instantons. master with mappings. cohomology.

manifolds: mathematical. theory.

is symplectic t. construction. and.

d. mirrors.

tau-functions. an.

type theory g.

quantum motives. Frobenius. associativity. invariants.

sigma t. construction. and.

and.

BIBLIOGRAPHY

This page intentionally left blank
Subject Index

III.8.2.1 means Chapter III, §8, subsection 8.2.1; 0.3.1 refers to the Introduction.

A–model, 0.1
Absolute stabilization, V.1.7, V.4.6
Abstract correlation functions, III.1.3
Admissible metric, I.5.4
Affine flat structure on supermanifold, I.1.2
Algebraic space, V.5.5.3
Algebraic stack, V.5.5
Artin stacks, V.5.5
Associative pre–Frobenius manifold, I.1.3
Associativity (WDVV) equations, 0.2, I.1.3.1
Atlas, V.5.5

B–model, 0.1
Boundary morphism of moduli stacks, V.4.7

Cartesian square of groupoids, V.4.3.1
Central operations, V.8.7
Chern classes, V.8.6
Class of prestable map, V.1.4.1
Classical linear operad, IV.1.1.1
Classifying groupoid, V.3.2.5
Co–identity, I.2.1.4
Cohomological correlators, VI.2.2
Cohomological Field Theory (CohFT), 0.3.1, III.4.1
Combinatorial type of prestable curve, III.2.5
Combinatorial type of prestable map, V.1.5
Complete Cohomological Field Theory, III.4.5
Configuration space, IV.4.3
Correlation functions of CohFT, III.4.1
Cycles on schemes, V.6.1
Cycles on DM–stacks, V.7.1.1
Cyclic $Comm_{\infty}$–algebra, III.1.2
Cyclic operad, IV.2.6

d–spectrum of a Frobenius manifold, III.4.10.4
Darboux–Egoroff’s equations, I.3.4
Degeneration Axiom for GW–invariants, III.5.2, VI.1.2
Deligne–Mumford (DM) stacks, V.5.5
Differential Gerstenhaber–Batalin–Vilkovyski (dGBV) algebra, III.9.5
Dilaton equation, V.5.3
Dimension Axiom for GW–invariants, III.5.3
Direct sum diagram (of Saito’s frameworks), III.8.5
Direct sum of singularities, III.8.6
Divisor Axiom for GW–invariants, III.5.3
Dual modular graph of prestable curve, III.2.5
Dualizing sheaf, V.1.1

Edge (of graph), III.2.1
Effectivity Axiom for GW–invariants, III.5.2, VI.1.2
Equivalence groupoid, V.5.5.2
Euler field, I.2.2.1
Euler field in quantum cohomology, I.4.4, III.5.3.4
Evaluation morphism, V.4.2.2
Excess intersection formula, V.8.8
Extended structure connection, I.2.5.1

F–algebra, I.5.5
F–manifold, I.5.1
Flag (of graph), III.2.1
Flat families, V.2.1, V.2.2
Flat functions and forms, I.1.3.1
Flat pullback, V.6.1.5, V.7.1.5
Formal Laplace transform, II.1.3
Formal Frobenius manifold, 0.4.1, III.1.1
Formal Frobenius manifold of qc–type, III.5.4.1
Frobenius manifold, 0.4.1, I.1.3

Generalized correlators, VI.6.1
Gepner’s Frobenius manifolds, III.8.4.1
Gerstenhaber–Batalin–Vilkovyski (GBV) algebra, III.9.4
Gluing along pairs of sections, V.2.3
Good monomials, III.3.5.1
Graph, III.2.1
Gravitational descendants, VI.2.1
Gravity algebra, III.1.9
Gromov–Witten (GW) invariants, III.5
Gromov–Witten (GW) correspondences, III.5, VI.1.3
Groupoid, V.3.2
Groupoid of prestable curves, V.3.2.1
Groupoid of prestable maps, V.3.2.2
Groupoid of universal curves, V.3.2.3
Gysin maps, V.6.2, V.7.2
Gysin pushforward for operational Chow groups, V.8.9.2

Hamiltonian structure of Schlesinger’s equations, II.2.4
Homological Chow groups of schemes, V.6.1.3
Homological Chow groups of DM–stacks, V.7.1.3
Homological Chow groups of Artin stacks, V.7.3

Identity Axiom for GW–invariants, III.5.3
Identity on pre–Frobenius manifold, I.2.1
Induced Frobenius structure, I.1.7

Landin transform, II.5.5.6
Large phase space, VI.2.4
Legendre–type transformation, I.5.4.2
Local regular imbedding (l.r.i.) of stacks, V.7.2
Logarithmic CohFT of rank one, III.6.1.4

Mapping to a Point Axiom for GW–invariants, III.5.3, VI.1.2
Markl’s operad, IV.2.5
Maurer–Cartan equations, III.9.1
Metric potential, I.3.3
Modified dualizing sheaf, V.1.2
Modular graph, III.2.4
Moduli space \(\bar{M}_{0,n} \), 0.3
Morphism of groupoids, V.4.2, V.4.3
Morphism of operads, IV.1.4
Motivic correlators, VI.2.2
Mumford classes, III.6.2

Normal bundle, V.6.2.1
Normal cone, V.6.2.1
Normalized CohFT of rank one, III.6.1.5
Novikov ring, III.5.2.1

Operational Chow groups, V.8.1
Orientation classes, V.8.1.1, V.8.1.2

Painlevé VI equation, II.5.4
Partition function, IV.3.2.2
Perturbation series, V.3
Potential, 0.2
Potential of qc–type, III.5.4.1
Potential pre–Frobenius manifold, I.1.3
Pre–Frobenius manifold, I.1.3
Prestable curve, III.2.1
Prestable map, V.1.3.1
Primary fields, VI.2.1
Projection formulas, V.8.5, V.8.9.4
Proper pushforward, V.6.1.4, V.7.1.4, V.8.3
Proper pushforward for operational Chow groups, V.8.9.1
Pullback for operational Chow groups, V.8.4
Puncture equation, VI.5.1
Pushforward of operational Chow groups, V.8.9
Quantum cohomology, 0.1, III.5
Quantum cohomology of projective spaces, II.4

Rank one CohFT, III.6.1
Rational equivalence of cycles on schemes, V.6.1.2
Rational equivalence of cycles on DM–stacks, V.7.1.2
Representable morphism of groupoids, V.5.3
Rotation coefficients, I.3.4

Saito’s framework, III.8.2.1
Schlesinger’s equations, III.2.3.1
Second structure connection, II.1.1
Semisimple Euler field, I.2.4
Semisimple (pre–)Frobenius manifold, I.3.1
 Singularities of meromorphic connections, II.2.1
Small quantum multiplication, III.5.4.2
S_τ–covariance Axiom for GW–invariants, III.5.2, VI.1.2
Special initial conditions, II.3.4
Special coordinates of tame semisimple germ, III.7.1.1
Special solutions to Schlesinger’s equations, II.3.1.1
Species of algebras, IV.6.1.4
Spectral cover of Frobenius manifold, III.8.1
Spectrum of Frobenius manifold, I.2.4
Split identity, I.2.1.3, III.7.5.8
Split semisimple (pre–)Frobenius manifold, I.3.1
Stabilization morphism of moduli stacks, V.4.4
Stabilization of prestable curve, V.1.6
Stabilization of prestable map, V.1.7
Stable curve, III.2.5
Stable map, V.1.3.2
Stable modular graph, III.2.4
Stack, V.5.1
Standard weight, IV.3.2.1
Strictly special solutions to Schlesinger’s equations, II.3.1.3
String equation, VI.5.2
Structure connection of pre–Frobenius manifold, I.1.4
Supermanifold, I.1.1.1

Tame semisimple germ of Frobenius manifold, III.7.1
Tame singularity of a connection, II.2.1
Tau–function of solution, I.2.2.3.2
Tensor product of formal Frobenius manifolds, III.4.4, III.4.10, III.6.6
Tensor product of analytic Frobenius manifolds, III.7
Tensor product diagram, III.7.5.9
Theta–divisor of Schlesinger’s equations, II.2.3
Twisted Frobenius manifold, I.5.4.2

Unfolding singularities, III.8.4

Versal deformation of meromorphic connection, II.2.2
Virasoro constraints, VI.2.5, VI.5
Vertex (of graph), III.2.1
Virtual dimension, V.1.9
Virtual fundamental class, VI.1.1
Virtual Poincaré polynomial, IV.4.1

WDVV-equations (= Associativity Equations) I.1.3.1, I.1.9
Weak Euler field, I.5.4.2
Weak Frobenius manifold, I.5.3
Weight of weak Euler field, I.5.4.2
Weight of Euler field, III.4.10
Weight of identity, III.4.10
Weil–Petersson volumes, III.6.4
Wick’s lemma, IV.3.4.2
This page intentionally left blank
Selected Titles in This Series

(Continued from the front of this publication)

5.1 G. C. Evans, Functionals and their applications; selected topics, including integral equations, 1918
5.2 O. Veblen, Analysis situs, 1922
 4 L. E. Dickson, On invariants and the theory of numbers
 W. F. Osgood, Topics in the theory of functions of several complex variables, 1914
3.1 G. A. Bliss, Fundamental existence theorems, 1913
3.2 E. Kasner, Differential-geometric aspects of dynamics, 1913
2 E. H. Moore, Introduction to a form of general analysis
 M. Mason, Selected topics in the theory of boundary value problems of differential equations
 E. J. Wilczyński, Projective differential geometry, 1910
1 H. S. White, Linear systems of curves on algebraic surfaces
 F. S. Woods, Forms on noneuclidean space
 E. B. Van Vleck, Selected topics in the theory of divergent series and of continued fractions, 1905