Attractors for Equations of Mathematical Physics

Vladimir V. Chepyzhov
Mark I. Vishik
Selected Titles in This Series

49 Vladimir V. Chepyzhov and Mark I. Vishik, Attractors for equations of mathematical physics, 2002
48 Yoav Benyamin and Joram Lindenstrauss, Geometric nonlinear functional analysis, Volume 1, 2000
47 Yuri I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, 1999
46 J. Bourgain, Global solutions of nonlinear Schrödinger equations, 1999
45 Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, 1999
43 Luis A. Caffarelli and Xavier Cabré, Fully nonlinear elliptic equations, 1995
42 Victor Guillemin and Shlomo Sternberg, Variations on a theme by Kepler, 1990
41 Alfred Tarski and Steven Givant, A formalization of set theory without variables, 1987
40 R. H. Bing, The geometric topology of 3-manifolds, 1983
39 N. Jacobson, Structure and representations of Jordan algebras, 1968
38 O. Ore, Theory of graphs, 1962
37 N. Jacobson, Structure of rings, 1956
35 A. C. Schaeffer and D. C. Spencer, Coefficient regions for Schlicht functions, 1950
34 J. L. Walsh, The location of critical points of analytic and harmonic functions, 1950
33 J. F. Ritt, Differential algebra, 1950
32 R. L. Wilder, Topology of manifolds, 1949
31 E. Hille and R. S. Phillips, Functional analysis and semigroups, 1957
30 T. Radó, Length and area, 1948
29 A. Weil, Foundations of algebraic geometry, 1946
28 G. T. Whyburn, Analytic topology, 1942
27 S. Lefschetz, Algebraic topology, 1942
26 N. Levinson, Gap and density theorems, 1940
25 Garrett Birkhoff, Lattice theory, 1940
24 A. A. Albert, Structure of algebras, 1939
23 G. Szegő, Orthogonal polynomials, 1939
22 C. N. Moore, Summable series and convergence factors, 1938
21 J. M. Thomas, Differential systems, 1937
20 J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 1935
19 R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, 1934
18 M. Morse, The calculus of variations in the large, 1934
17 J. M. Wedderburn, Lectures on matrices, 1934
16 G. A. Bliss, Algebraic functions, 1933
15 M. H. Stone, Linear transformations in Hilbert space and their applications to analysis, 1932
14 J. F. Ritt, Differential equations from the algebraic standpoint, 1932
13 R. L. Moore, Foundations of point set theory, 1932
12 S. Lefschetz, Topology, 1930

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
This page intentionally left blank
Attractors for Equations of Mathematical Physics
This page intentionally left blank
Attractors for Equations of Mathematical Physics

Vladimir V. Chepyzhov
Mark I. Vishik
ABSTRACT. The authors study new problems related to the theory of infinite-dimensional dynamical systems that were intensively developed during the last few years. They construct the attractors and study their properties for various non-autonomous equations of mathematical physics: the 2D and 3D Navier–Stokes systems, reaction-diffusion systems, dissipative wave equations, the complex Ginzburg–Landau equation, and others. Since the attractors usually have infinite dimension, the research is focused on the Kolmogorov ε-entropy of attractors. Upper estimates for the ε-entropy of uniform attractors of non-autonomous equations in terms of ε-entropy of time-dependent coefficients of the equation are proved.

The authors also construct attractors for those equations of mathematical physics for which the solution of the corresponding Cauchy problem is not unique or the uniqueness is not known (for example, the 3D Navier–Stokes system). The theory of the trajectory attractors for these equations is developed, which is later used to construct global attractors for equations without uniqueness. The method of trajectory attractors is applied to the study of finite-dimensional approximations of attractors. The perturbation theory for trajectory and global attractors is developed and used in the study of the attractors of equations with terms rapidly oscillating with respect to spatial and time variables. It is shown that the attractors of these equations are contained in a thin neighbourhood of the attractor of the averaged equation.

Library of Congress Cataloging-in-Publication Data
Chepyzhov, Vladimir V., 1962—
Attractors for equations of mathematical physics / Vladimir V. Chepyzhov, Mark I. Vishik. — p. cm. — (Colloquium publications / American Mathematical Society, ISSN 0065-9258 ; v. 49)
Includes bibliographical references and index.
QA614.813.C46 2001
515'.353–dc21
2001046406

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Assistant to the Publisher, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2002 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 07 06 05 04 03 02
Dedicated to our wives, Katya and Asya
This page intentionally left blank
Contents

Introduction 1

Part 1. Attractors of Autonomous Equations 15

Chapter I. Attractors of Autonomous Ordinary Differential Equations 17
 1. Semigroups and attractors 17
 2. Examples of ordinary differential equations and their attractors 21

Chapter II. Attractors of Autonomous Partial Differential Equations 27
 1. Function spaces and embedding theorems 28
 2. Operator semigroups. Basic notions 35
 3. Attractors of semigroups 37
 4. Reaction-diffusion systems 38
 5. 2D Navier–Stokes system 46
 6. Hyperbolic equation with dissipation 49

Chapter III. Dimension of Attractors 51
 1. Fractal and Hausdorff dimension 51
 2. Dimension of invariant sets 53
 3. Optimization of the bound for the fractal dimension 59
 4. Application to semigroups 62
 5. Applications to evolution equations 65
 6. Lower bounds for the dimension of attractors 73

Part 2. Attractors of Non-autonomous Equations 77

Chapter IV. Processes and Attractors 79
 1. Symbols of non-autonomous equations 80
 2. Cauchy problem and processes 82
 3. Uniform attractors 83
 4. Haraux’s example 85
 5. The reduction to a semigroup 86
 6. On uniform (w.r.t. \(\tau \in \mathbb{R} \)) attractors 92

Chapter V. Translation Compact Functions 95
 1. Almost periodic functions 95
 2. Translation compact functions in \(C(\mathbb{R}; \mathcal{M}) \) 97
 3. Translation compact functions in \(L_{p; w}^{\text{loc}}(\mathbb{R}; \mathcal{E}) \) 101
 4. Translation compact functions in \(L_{\text{cloc}}^{\text{loc}}(\mathbb{R}; \mathcal{E}) \) 104
 5. Other translation compact functions 106
Chapter VI. Attractors of Non-autonomous Partial Differential Equations 107
1. 2D Navier–Stokes system 107
2. Non-autonomous reaction-diffusion systems 114
3. Non-autonomous Ginzburg–Landau equation and others 118
4. Non-autonomous damped hyperbolic equations 119

Chapter VII. Semiprocesses and Attractors 129
1. Families of semiprocesses and their attractors 129
2. On the reduction to the semigroup 132
3. Non-autonomous equations with tr.c. on \mathbb{R}_+ symbols 135
4. Prolongations of semiprocesses to processes 137
5. Asymptotically almost periodic functions 140
7. Cascade systems and their attractors 146

Chapter VIII. Kernels of Processes 149
1. Properties of kernels 149
2. On the dimension of connected sets 153
3. Dimension estimates for kernel sections 155
4. Applications to non-autonomous equations 157

Chapter IX. Kolmogorov ε-Entropy of Attractors 163
1. Estimates of the ε-entropy 163
2. Fractal dimension of attractors 173
3. Functional dimension and metric order 176
4. Applications to evolution equations 177
5. η-entropy and metric order of Σ 188
6. ε-entropy in the extended phase space 192

Part 3. Trajectory Attractors 197

Chapter X. Trajectory Attractors of Autonomous Ordinary Differential Equations 199
1. Preliminary propositions 200
2. Construction of the trajectory attractor 203
3. Examples of equations 205
4. Dependence on a parameter 207

Chapter XI. Attractors in Hausdorff Spaces 211
1. Some topological preliminaries 211
2. Semigroups in topological spaces and attractors 214
3. Applications to (\mathcal{M}, Σ)-attractors 218

Chapter XII. Trajectory Attractors of Autonomous Equations 219
1. Trajectory spaces of evolution equations 219
2. Existence of trajectory attractors 222
3. Trajectory and global attractors 224

Chapter XIII. Trajectory Attractors of Autonomous Partial Differential Equations 229
1. Autonomous Navier–Stokes systems 229
CONTENTS

2. Autonomous hyperbolic equations 242
3. Hyperbolic equations depending on a parameter 251

Chapter XIV. Trajectory Attractors of Non-autonomous Equations 259
1. Non-autonomous equations, their symbols, and trajectory spaces 260
2. Existence of uniform trajectory attractors 262
3. Equations with symbols on the semiaxis 266

Chapter XV. Trajectory Attractors of Non-autonomous Partial Differential Equations 269
1. Non-autonomous Navier–Stokes systems 269
2. Trajectory attractor for 2D Navier–Stokes system 278
3. Reaction-diffusion systems 282
4. Non-autonomous hyperbolic equations 292

Chapter XVI. Approximation of Trajectory Attractors 299
1. Trajectory attractors of non-autonomous ordinary differential equations 299
2. Trajectory attractors of Galerkin systems 302
3. Convergence of trajectory attractors of Galerkin systems 303

Chapter XVII. Perturbation of Trajectory Attractors 305
1. Trajectory attractors of perturbed equations 305
2. Dependence of trajectory attractors on a small parameter 307

Chapter XVIII. Averaging of Attractors of Evolution Equations with Rapidly Oscillating Terms 311
1. Averaging of rapidly oscillating functions 311
2. Averaging of equations and systems 320
3. Perturbation with rapidly oscillating terms 341

Appendix A. Proofs of Theorems II.1.4 and II.1.5 345

Appendix B. Lattices and Coverings 349

Bibliography 353

Index 361
This page intentionally left blank
Bibliography

BIBLIOGRAPHY

[38] , Trajectory attractors for reaction-diffusion systems, Topol. Methods Nonlinear Anal. 7 (1996), no. 1, 49–76.

This page intentionally left blank
Index

$(E \times \Sigma, E)$-continuous family, 88
(Θ^loc, Σ)-closed family, 262
ε-entropy, 51, 165
ε-period, 95
d-dimensional Hausdorff measure, 52
k-dimensional torus, 82
m-dimensional trace, 62

Almost periodic
function, 81, 95
 asymptotically, 133, 140
 in the Stepanov sense, 97

Attracting property, 84
Attractor, 19, 217, 218
 $(\mathcal{M}, \mathcal{T})$-attractor, 218
 global, 19, 37, 225, 239, 249
 uniform, 265
Lorenz, 65
 non-uniform, 85
 trajectory, 203, 223
 uniform, 262
 uniform, 84, 93

Average
 in $L^\infty(\Omega)$, 312
 in $L^p, w(\Omega)$, 311
 time uniform, 316

Averaging
 spatial, 311
 time, 316

Backward uniqueness property, 138
Belousov–Zhabotinsky equations, 43
Bochner–Amerio criterion, 96

Cascade system, 133
Chafee–Infante equation, 41, 330
Closure, 212

Compactness
 criterion
 in $C(\mathbb{R}; \mathcal{M})$, 98
 in $L^loc(\mathbb{R}; \mathcal{E})$, 101
 in $L^loc_p(\mathbb{R}; \mathcal{E})$, 105
 theorems, 31

Compactum, 214
Complete trajectory, 19, 38, 88, 218, 223, 263
Continuous mapping, 213

Convergent sequence, 212
 $*$-weakly, 32
 weakly, 32

Covering, 212
 density, 349
 radius, 349

Derivative in the distribution sense, 31
Differential inequality, 35

Dimension
 fractal, 52, 173
 functional, 176
 Hausdorff, 52
 local
 fractal, 175
 functional, 176
 Lyapunov, 62

Dissipative wave equation, 334
Dissipativity condition, 17
Douady–Oesterlé theorem, 55

Energy norm, 50
Equilibrium point, 20

First Urysohn theorem, 214
Fitz–Hugh–Nagumo equations, 41
Fréchet–Urysohn space, 213
Fundamental
 parallelepiped, 349
 region, 349

Gagliardo–Nirenberg inequality, 30
Galerkin
 approximation, 23, 302
 method, 231, 284

Ginzburg–Landau equation, 42, 118, 328
Grashof number, 47, 235
Gronwall’s inequality, 34
Group, 36

Hölder’s inequality, 34
Hahn–Banach theorem, 32
Haraux’s example, 85
Hausdorff
 dimension, 52
 space, 213

Hull, 81, 96, 132, 135

Hyperbolic equation
damped, 119
 dissipative, 49
 with dissipation, 49, 71, 159, 185, 292, 306
Inductive limit, 221
Instability index, 73
Interpolation inequality, 30

Kernel
 of equation, 20, 223, 263
 of process, 88, 149
 of semigroup, 38, 218
 section, 20, 38, 88, 218
Kolmogorov ε-entropy, 164

Ladyzhenskaya’s inequality, 46, 230, 235
Lattice, 349
 cube, 351
 determinant, 349
 enerating matrix, 349
 main Voronoi, 351
Lieb–Thirring inequality, 69
Lipschitz condition, 165
Lorenz
 attractor, 65
 system, 23
Lotka–Volterra system, 44
Lyapunov
 dimension, 62
 uniform exponents, 61

Metric order, 176
 local, 176
Minimality property, 84
Multiplicative properties, 83

Navier–Stokes system, 269
 2D, 46, 68, 74, 107, 157, 177, 239, 278, 323
 3D, 229, 305, 320
Nikol’skiǐ space, 279

Periodic orbit, 20
Point
 adherent, 211
 limit, 212
Process, 82, 83
 bounded, 83
 family of processes, 84
 periodic, 87
Quasidifferential, 53
Quasiperiodic
 function, 82, 96
 solution, 20
 symbol, 88
Reaction–diffusion
 equation, 38
 system, 66, 75, 114, 158, 181, 282, 325

Second axiom of countability, 212
Second Uryson theorem, 214
Semigroup, 18, 36, 214
 (E, E)-bounded, 37
 (E, E)-continuous, 37
 asymptotically compact, 37
 compact, 37
 identity, 36
Semiprocess, 129
Set
 (M, T)-attracting, 218
 ω-limit, 19, 38, 130, 215
 absorbing, 18, 37, 83
 attracting, 37, 83, 223
 countably precompact, 214
 local unstable, 73
 precompact, 214
 relatively dense, 95
 uniformly absorbing, 84
 attracting, 84, 92, 262
Sets
 closed, 211
 open, 211
Sine–Gordon equation, 49
Sobolev embedding theorem, 29
Space
 compact, 214
 countably compact, 214
 Fréchet-Uryson, 213
 Hausdorff, 213
 metrizable, 214
 normal, 213
 separable, 212
 topological, 211
Symbol
 of equation, 79, 80
 of process, 84
 space, 80, 81, 84
Topology base, 212
Trajectory, 220, 261
 attractor, 203, 223
 uniform, 262
 space, 200, 219, 260
 united, 261
Translation
 bounded function, 105
 compact function, 81, 105, 135
 group, 260
 identity, 83, 86
 semigroup, 200
Uniformly quasidifferentiable
 map, 53
 sequence, 153
Unstable trajectory, 20
Volume contracting condition, 165
Voronoi region, 349
Weak solution, 230, 242, 283
Young's inequality, 34