Chiral Algebras

Alexander Beilinson
Vladimir Drinfeld
American Mathematical Society

Colloquium Publications
Volume 51

Chiral Algebras

Alexander Beilinson
Vladimir Drinfeld
Chiral algebras / Alexander Beilinson, Vladimir Drinfeld.

p. cm. — (Colloquium publications, ISSN 0065-9258 ; v. 51)
Includes bibliographical references and index.

QC20.7.A37B45 2004
530.15'635—dc22 2003063872

Library of Congress Cataloging-in-Publication Data
Beilinson, Alexander, 1957–

Chiral algebras / Alexander Beilinson, Vladimir Drinfeld.

p. cm. — (Colloquium publications, ISSN 0065-9258 ; v. 51)
Includes bibliographical references and index.

QC20.7.A37B45 2004
530.15'635—dc22 2003063872

Copyright and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

© 2004 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government.

Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/
To our parents
This page intentionally left blank
Contents

Introduction ... 1
Chapter 1. Axiomatic Patterns .. 11
 1.1. Pseudo-tensor categories 11
 1.2. Complements .. 18
 1.3. Compound tensor categories 24
 1.4. Rudiments of compound geometry 32
Chapter 2. Geometry of \mathcal{D}-schemes 53
 2.1. \mathcal{D}-modules: Recollections and notation 53
 2.2. The compound tensor structure 67
 2.3. \mathcal{D}_X-schemes .. 79
 2.4. The spaces of horizontal sections 89
 2.5. Lie* algebras and algebroids 95
 2.6. Coisson algebras ... 113
 2.7. The Tate extension ... 117
 2.8. Tate structures and characteristic classes 129
 2.9. The Harish-Chandra setting and the setting of c-stacks 143
Chapter 3. Local Theory: Chiral Basics 157
 3.1. Chiral operations ... 157
 3.2. Relation to “classical” operations 163
 3.3. Chiral algebras and modules 164
 3.4. Factorization .. 172
 3.5. Operator product expansions 194
 3.6. From chiral algebras to associative algebras 200
 3.7. From Lie* algebras to chiral algebras 212
 3.8. BRST, alias semi-infinite, homology 227
 3.9. Chiral differential operators 238
 3.10. Lattice chiral algebras and chiral monoids 257
Chapter 4. Global Theory: Chiral Homology

4.1. The cookware
4.2. The construction and first properties
4.3. The BV structure and products
4.4. Correlators and coinvariants
4.5. Rigidity and flat projective connections
4.6. The case of commutative \mathcal{D}_X algebras
4.7. Chiral homology of the de Rham-Chevalley algebras
4.8. Chiral homology of chiral envelopes
4.9. Chiral homology of lattice chiral algebras

Bibliography

Index and Notation
Bibliography

[BaK] B. Bakalov and V. Kac, Twisted modules over lattice vertex algebras, math.QA/0402315.

363

Index and Notation

action of a Lie* algebra on a commutative1 algebra 1.4.9
action of a Lie* algebra on a chiral algebra 3.3.3
action of a Lie algebroid on a chiral algebra 4.5.4, twisted 4.5.6
action of a pseudo-tensor category on a category 1.2.11
action of a tensor category on a pseudo-tensor category 1.1.6(v)
admissible complex of sheaves on X^8 4.2.1
admissible D-complex on X^8 4.2.6
algebraic D-space 2.3.1
annihilator 3.3.7
augmentation functor, non-degenerate 1.2.5, reliable 1.4.7
augmentation functor in compound setting 1.3.10, in D-module setting 2.2.7
augmented compound tensor category, functor 1.3.16
augmented operad 1.2.4
augmented pseudo-tensor category 1.2.4
augmented pseudo-tensor functor, unit 1.2.8
Batalin-Vilkovisky (BV) algebras 4.1.6
BV extension of a Lie algebroid 4.1.9
BV quantization of an odd Poisson algebra 4.1.6
BV structure on the chiral chain complex 4.3.1
BRST reduction, charge, differential: classical 1.4.23, quantum 3.8.9, 3.8.20
BRST property 1.4.24, 3.8.10, 3.8.21
calculus of variations 2.3.20
cdo 3.9.5
centralizer 3.3.7
center of a chiral algebra 3.3.7
central chiral modules 3.3.7
Chern classes ch^D_n 2.8.10
Chevalley-Cousin complex of a chiral algebra 3.4.11, relative version 4.4.9
Chevalley complex of a Lie* algebra, inner 1.4.5, 1.4.10
chiral action of a Lie* algebra 3.7.16, of a chiral Lie algebroid 3.9.24
chiral action of a chiral monoid 3.10.17
chiral algebras 3.3.3, commutative 3.3.3, non-unital 3.3.2, universal 3.3.14
chiral algebra freely generated by (N, P) 3.4.14,
chiral R_{D,t}-algebras 3.9.4
chiral enveloping algebra of a Lie* algebra 3.7.1, of a chiral Lie algebroid 3.9.11
chiral extension of a Lie* algebroid 3.9.6, rigidified 3.9.8
chiral homology 4.2.11
chiral lattice algebras 3.10.1

369
chiral Lie algebroids 3.9.6
chiral modules 3.3.4
chiral L-modules 3.7.16
chiral $R_{\mathcal{D}_{i,j}}$-modules 3.9.1
chiral monoid 3.10.17
chiral operations 3.1.1, for (g, K)-modules 3.1.16
chiral A-operations 3.3.4
chiral L^{ch}-operations 3.7.16
chiral product 3.3.2
chiral pseudo-tensor structure 3.1.2
Clifford algebra, coisson 1.4.21, chiral 3.8.6, linear algebra version 3.8.17
coisson algebras 1.4.18, modules 1.4.20, \mathcal{D}-module setting 2.6.1, elliptic 2.6.6
commutative † algebras, modules 1.4.6
commutative \mathcal{D}_X-algebras 2.3.1
complementary quotients 1.3.1
compound operad 1.3.18
compound pseudo-tensor category 1.3.7, augmented 1.3.10
compound pseudo-tensor functor 1.3.9
compound tensor category, functor 1.3.14
compound tensor product maps 1.3.12, binary 1.3.13
connections for Lie* algebroids 1.4.17
connections on chiral homology 4.5
Contou-Carrère symbol 3.10.13
convenient \mathcal{D}_X-algebra 4.6.1
convenient R^c-modules 4.6.3
coordinate system on a \mathcal{D}_X-scheme 2.3.17
c operations 1.4.27, in \mathcal{D}-module setting 3.2.5
correlators 4.4.1
cotangent complex 2.3.15, 4.1.5, 4.6.6
cotorsor 3.4.16, 3.10.12
Cousin \mathcal{D}-complex 4.2.9
Cousin filtration 4.2.1, 4.2.19
Cousin spectral sequence 4.2.3, 4.2.11, 4.2.19
c-stack, c-rank 2.9.10

\mathcal{D}_X-algebras 2.3.1
\mathcal{D}-algebra point 2.3.1
\mathcal{D}-modules: left and right 2.1.1, functoriality 2.1.2, induced 2.1.8
\mathcal{D}-modules: quasi-induced 2.1.11, maximal constant quotient 2.1.12
\mathcal{D}-modules: topology at a point x 2.1.13, universal 2.9.9
\mathcal{D}-modules on $\mathcal{R}(X)$, left 3.4.2
\mathcal{D}-modules on X^S, right 3.4.10
de Rham-Chevalley complex of a Lie* algebroid, inner 1.4.14
de Rham complex of a \mathcal{D}-module 2.1.7
de Rham homology 2.1.12, cohomology 2.1.7
\mathcal{D}_X-scheme 2.3.1, formally smooth, smooth, very smooth 2.3.15
\mathcal{D}_X-scheme: the global space of horizontal sections 2.4.1
\mathcal{D}_X-scheme: the local space of horizontal sections 2.4.8
Dolbeault algebras 4.1.3
Dolbeaul $\mathcal{D}_\mathcal{R}(\mathcal{X})$-algebra 4.2.7
Dolbeaul resolutions 4.1.4
Dolbeault-style algebra 4.1.4
Dolbeault-style $\mathcal{D}_\mathcal{R}(\mathcal{X})$-algebra 4.2.16
duality 1.3.11, 2.2.16
duality for de Rham cohomology, global 2.2.17, local 2.7.10

elliptic morphism, Lie* algebroid 2.5.22, coisson algebra 2.6.6
enveloping algebra of an operadic algebra 1.2.16, of a Lie algebroid 2.9.2
enveloping BV algebra of a BV algebroid 4.1.8, 4.1.9
enveloping chiral algebra of a chiral Lie* algebroid 3.9.11
Euler-Lagrange equations 2.3.20

factorization algebras 3.4.1, \mathcal{D}-module setting 3.4.4, truncated 3.4.13
factorization algebras: canonical \mathcal{D}-module structure 3.4.7, commutative 3.4.20
factorization algebra freely generated by $(\mathcal{N}, \mathcal{P})$ 3.4.14
factorization \mathcal{B}-modules 3.4.18
factorization structure 3.4.4
filtration on a chiral algebra, commutative, unital 3.3.12
flabby complex of sheaves 4.2.2
formal groupoid 1.4.15
formally smooth/étale morphism of $\mathcal{D}_\mathcal{X}$-schemes 2.3.16
Fourier-Mukai transform 4.9.9

$(\mathfrak{g}, \mathcal{K})$-modules 2.9.7, chiral structure 3.1.16
$(\mathfrak{g}, \mathcal{K})$-structure 2.9.8
Gelfand-Dikii coisson algebra 2.6.8
Gelfand-Kazhdan structure 2.9.9
group action on a chiral algebra 3.4.17

hamiltonian reduction 1.4.19
handsome complexes of $!$-sheaves on X^8 4.2.2
Harish-Chandra pair, module 2.9.7
Heisenberg Lie* algebra 2.5.9
Heisenberg group 3.10.13
homotopically $\mathcal{O}_\mathcal{X}$- and $\mathcal{D}_\mathcal{X}$-flat complexes 2.1.1
homotopy unit commutative algebra 4.1.14
homotopy unital commutative algebra 4.1.14, BV algebra 4.1.15
Hopf chiral algebras 3.4.16

ind-scheme 2.4.1
induced modules 3.7.15, 3.9.24
inner Hom, inner \mathcal{P} objects 1.2.1, in augmented sense 1.2.7
jet scheme 2.3.2–2.3.3

Kac-Moody extension 2.5.9
Kashiwara’s lemma 2.1.3
Knizhnik-Zamolodchikov (KZ) equations 4.4.6

lattices, c- and d- 2.7.7
Lie* algebras and modules 1.4.4, \mathcal{D}-module setting 2.5.3–2.5.4
Lie algebroid 2.9.1
Lie* algebroid 1.4.11, \(\mathcal{D} \)-module setting 2.5.16, elliptic 2.6.6
Lie coalgebroid 1.4.14

matrix * algebra 1.4.2
middle de Rham cohomology sheaf \(\mathcal{H} \) 2.1.6
Miura torsor 2.8.17
module operads 1.2.11
modules over operadic algebras 1.2.13
morphisms of DG \(\mathcal{D}_X \)-algebras: semi-free, elementary 4.3.7
multijet scheme 3.4.21
mutually commuting morphisms of chiral algebras 3.4.15

\(n \)-coisso algebra 1.4.18
\(n \)-Poisson algebra 1.4.18
nice complexes of \(! \)-sheaves on \(X^\$ \) 4.2.1
non-degenerate pairs \((\mathcal{F}, \nabla^h) \) 2.5.23
normally ordered tensor product 3.6.1

\(\mathcal{O} \)-modules on \(\mathcal{R}(X) \) 3.4.2
odd coisson algebra 1.4.18
odd Poisson algebra 1.4.18
ope algebra, associative, commutative 3.5.9
oper 2.6.8
operad 1.1.4, of Jacobi type 3.7.1
operadic algebra 1.1.6(iii), augmented 1.2.8
operator product expansion 3.5.8

perfect BV algebra 4.1.18
perfect commutative DG algebra 4.1.17
perfect complexes 4.1.16
Poincaré-Birkhoff-Witt theorem for Lie* algebras 3.7.14, twisted case 3.7.20
PBW theorem for usual Lie algebroids 2.9.2, 3.9.12
PBW theorem for chiral Lie algebroids 3.9.11
polydifferential * operations 1.4.8, \(\mathcal{D} \)-module setting 2.3.12
pre-factorization algebra 3.4.14
projective connections 2.5.10
pseudo-tensor category 1.1.1
pseudo-tensor category: \(\mathcal{A} \)-, \(k \)-, additive, abelian 1.1.7
pseudo-tensor functors, adjointness 1.1.5
pseudo-tensor \(k \)-category 1.1.7
pseudo-tensor product 1.1.3
pseudo-tensor structure 1.1.2
pseudo-tensor subcategory, full 1.1.6(i)
quantization of a coisson algebra 3.3.11, mod \(t^2 \) 3.9.10
quasi-factorization algebra 3.4.14

Ran’s space 3.4.1
reasonable topological algebra 2.4.8
representable pseudo-tensor structure 1.1.3
resolutions of commutative \(\mathcal{D}_X \)-algebras 4.3.7
rigidification of a Lie* algebroid 1.4.13, of a Lie algebroid 2.9.1
INDEX AND NOTATION

rigidified B-extension 3.9.8

A-structure 1.2.11
* algebras 1.4.1, \mathcal{D}-module setting 2.5.1
* pairing, non-degenerate 1.4.2
* operations for \mathcal{D}-modules 2.2.3, induced case 2.2.4(i)
Schouten-Nijenhuis bracket 1.4.18
semi-free \mathcal{D}_X-algebras 4.3.7, 4.6.1
semi-free modules 4.1.5, 4.6.3
smooth \mathcal{D}_X-algebras 2.3.15
special $\mathcal{D}_X^!$-module 3.1.6
stress-energy tensor 3.7.25
Sugawara’s construction 3.7.25
super complex 1.1.16
super conventions 1.1.16

I-topology 2.1.17
Ξ-topologies: $\Xi^r_\mathcal{D}$ 2.1.13, Ξ^Lie_x 2.5.12, Ξ^RL_x 2.5.18, Ξ^*_{p} 2.7.11
Ξ-topologies: Ξ^cois_{x} 2.6.3, Ξ^st_{p} 3.6.4
tangent Lie* algebroid 1.4.16, for a \mathcal{D}-scheme: Remark (ii) in 2.3.12, 2.3.15
Tate extension: \mathcal{D}-module setting 2.7.2, 2.7.3, on a \mathcal{D}_X-scheme 2.7.6
Tate extension: linear algebra setting 2.7.8, chiral approach 3.8.5
Tate extension of a Lie* algebra 2.8.15, 3.8.7
Tate structure on a vector \mathcal{D}-bundle 2.8.1
Tate vector space, compact, discrete 2.7.7
tensor product of chiral algebras 3.4.15
tensor product of pseudo-tensor categories 1.1.9
topological associative algebra 3.6.1
topological commutative algebra 2.4.1
topological Lie algebroid 2.5.18
transversal quotients 1.3.1
twists of chiral algebras 3.4.17

unit object in a compound tensor category 1.3.16, strong 1.3.17
vector \mathcal{D}-bundles 2.1.5, on a \mathcal{D}_X-scheme 2.3.10
vector \mathcal{D}_X-scheme 2.3.19
vertex operator 3.5.14
very smooth \mathcal{D}_X-algebras 2.3.15
Virasoro extension 2.5.10
Virasoro vector 3.7.25

W-algebras 3.8.16
Weyl algebra, chiral and coisso, linear algebra version 3.8.17
Wick algebra 3.6.11, global 3.6.20

θ-datum 3.10.3

Notation

(A) 2.4.1, 4.2.16
A^*_{x} 2.4.8, 3.6.2, 3.6.4, 3.6.13
INDEX AND NOTATION

\begin{enumerate}
\item[A^{as}] 3.6.14
\item[A^{Lie}] 3.3.3
\item[$A(P)$] 3.4.17
\item[A_w] 3.6.11
\item[$A_w(X)$] 3.6.20
\item[$B(M)$] 3.4.18
\item[$\mathcal{B}, \mathcal{B}_w, \mathcal{B}_\mu$] 4.1.6
\item[$C(A)$] 3.4.11
\item[$C(B, A)$] 4.4.9
\item[$C^{ch}(X, A)$] 4.2.11
\item[$C^{ch}(X, A)_{\mathbb{Q}}$, $C^{ch}(X, A)_{\mathbb{P}}$] 4.2.12
\item[$C^{ch}(X, A, \{M_s\})$, $C^{ch}(X, A, \{M_s\})_{\mathbb{P}}$, $C^{ch}(X, A, \{M_s\})_{\mathbb{P}}$] 4.2.19
\item[$C^{ch}(X, A, M)_{\mathbb{P}}$, $C^{ch}(X, A, M)_{\mathbb{P}}$] 4.2.19
\item[$C^{ch}(X, B, A)_{\mathbb{P}}$] 4.4.9
\item[$C^A(X)$] 3.3.3
\item[$C^A(X)_F$] 3.4.16
\item[$C^R(\mathcal{L}, \cdot)$, $C^R(\mathcal{L}, \cdot)$, $C_R(\mathcal{L})$] 2.9.1
\item[$C^\text{Pois}(R)$] 2.9.1
\item[$CM(\mathcal{R}(X))$] 4.2.6
\item[$C^\text{Pois}(R)$] 1.4.18
\item[$Comu$] 1.4.6, 4.1.6
\item[$Comu_D(X)$] 2.3.1
\item[$\Delta^{(S)}$] 3.4.10
\item[D_{DR}] 3.9.18
\item[$DM(\mathcal{R}(X))$] 4.2.6
\item[$\mathcal{E}nd^*(V)$] 2.2.15, 2.5.6(a)
\item[$\mathcal{E}xp(X)$] 3.4.1
\item[$gl(V)$] 2.5.6(a)
\item[$gl(V)^\mathfrak{b}$] 2.7.4, 2.7.8
\item[$H^{ch}(X, A)$] 4.2.11
\item[$H^{DR}(X, M)$] 2.1.7
\item[$H^{DR}(X, M)$] 2.1.12
\item[Hoc] 4.1.7
\item[$\mathcal{J}Z$] 2.3.2
\item[L_\vdash] 1.1.16
\item[L^\wedge] 1.4.16, 2.9.1
\item[$M^\mathfrak{t}$, $N^\mathfrak{r}$] 2.1.1
\item[M_{const}] 2.1.12
\item[M_X] 2.8.17
\item[$M^r(X)$, $M^\mathfrak{r}(X)$, $M(X)$] 2.1.1
\item[$M(\mathcal{X})^\mathfrak{t}$] 2.2.6
\item[$M(\mathcal{X})^{ch}$] 3.1.2,
\item[$M(\mathcal{X})^{cl}$] 3.2.5
\item[$M(\mathcal{X}, R^\mathfrak{c})$] 2.3.5
\item[$M(X, A)$, $M(X, A)^{ch}$] 3.3.4
\item[$M(X^S)$] 3.4.10
\item[$M^\mathfrak{r}(\mathcal{R}(X))$] 3.4.2
\item[$O_{\mathfrak{f}}$] 3.5.8
\item[$\mathcal{P}^{ch}(A, L)$] 3.9.6
\end{enumerate}
$\mathcal{P}^{\mathrm{ch}}(L)$ 3.9.6
$\mathcal{P}^{\mathrm{cl}}(L)$ 2.8.2
$\mathcal{P}(F)$ 3.4.16
$Q(I)$ 1.3.1
$Q(I, m)$ 1.4.27
$\mathcal{R}(X)$ 3.4.1
\S 1.1.1
\S 1.2.4
$\mathcal{S}\text{ch}_D(X)$ 2.3.1
$\text{Spec} \langle R, L \rangle$ 2.5.18
$\text{Spf} Q$ 2.4.1
$\text{Tate}(V), \text{Tate}(y)$ 2.8.1
$U^{(f)}$ 3.1.1
$U^{[j/l]}$ 3.4.4
$U(L)$ 3.7.1
$\mathcal{V}(a)$ 3.6.14
$Z(A)$ 3.3.7
λ_I 2.2.2, 3.1.4
$\otimes^*, \otimes^{\mathrm{ch}}$ 3.4.10
\otimes 3.6.1
Ξ_x^{ss} 2.4.8, 3.6.4
Ξ_x 2.1.13
Ξ_x^{Lie} 2.5.12
Ξ_x^R 2.4.11
Ξ_x^L 2.5.19
$1^{\mathrm{ch}} = 1^{\mathrm{ch}}_A$ 4.2.16.
This page intentionally left blank
Titles in This Series

51 Alexander Beilinson and Vladimir Drinfeld, Chiral algebras, 2004
50 E. B. Dynkin, Diffusions, superdiffusions and partial differential equations, 2002
49 Vladimir V. Chepyzhov and Mark I. Vishik, Attractors for equations of mathematical physics, 2002
48 Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis, Volume 1, 2000
47 Yuri I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, 1999
46 J. Bourgain, Global solutions of nonlinear Schrödinger equations, 1999
45 Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, 1999
43 Luis A. Caffarelli and Xavier Cabrè, Fully nonlinear elliptic equations, 1995
42 Victor Guillemin and Shlomo Sternberg, Variations on a theme by Kepler, 1990
41 Alfred Tarski and Steven Givant, A formalization of set theory without variables, 1987
40 R. H. Bing, The geometric topology of 3-manifolds, 1983
39 N. Jacobson, Structure and representations of Jordan algebras, 1968
38 O. Ore, Theory of graphs, 1962
37 N. Jacobson, Structure of rings, 1956
35 A. C. Schaeffer and D. C. Spencer, Coefficient regions for Schlicht functions, 1950
34 J. L. Walsh, The location of critical points of analytic and harmonic functions, 1950
33 J. F. Ritt, Differential algebra, 1950
32 R. L. Wilder, Topology of manifolds, 1949
31 E. Hille and R. S. Phillips, Functional analysis and semigroups, 1957
30 T. Radó, Length and area, 1948
29 A. Weil, Foundations of algebraic geometry, 1946
28 G. T. Whyburn, Analytic topology, 1942
27 S. Lefschetz, Algebraic topology, 1942
26 N. Levinson, Gap and density theorems, 1940
25 Garrett Birkhoff, Lattice theory, 1940
24 A. A. Albert, Structure of algebras, 1939
23 G. Szegő, Orthogonal polynomials, 1939
22 C. N. Moore, Summable series and convergence factors, 1938
21 J. M. Thomas, Differential systems, 1937
20 J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 1935
19 R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, 1934
18 M. Morse, The calculus of variations in the large, 1934
17 J. M. Wedderburn, Lectures on matrices, 1934
16 G. A. Bliss, Algebraic functions, 1933
15 M. H. Stone, Linear transformations in Hilbert space and their applications to analysis, 1932
14 J. F. Ritt, Differential equations from the algebraic standpoint, 1932
13 R. L. Moore, Foundations of point set theory, 1932
12 S. Lefschetz, Topology, 1930
11 D. Jackson, The theory of approximation, 1930
TITLES IN THIS SERIES

10 A. B. Coble, Algebraic geometry and theta functions, 1929
9 G. D. Birkhoff, Dynamical systems, 1927
8 L. P. Eisenhart, Non-Riemannian geometry, 1927
7 E. T. Bell, Algebraic arithmetic, 1927
6 G. C. Evans, The logarithmic potential, discontinuous Dirichlet and Neumann problems, 1927

5.1 G. C. Evans, Functionals and their applications; selected topics, including integral equations, 1918

5.2 O. Veblen, Analysis situs, 1922
4 L. E. Dickson, On invariants and the theory of numbers
 W. F. Osgood, Topics in the theory of functions of several complex variables, 1914

3.1 G. A. Bliss, Fundamental existence theorems, 1913
3.2 E. Kasner, Differential-geometric aspects of dynamics, 1913
2 E. H. Moore, Introduction to a form of general analysis
 M. Mason, Selected topics in the theory of boundary value problems of differential equations
 E. J. Wilczyński, Projective differential geometry, 1910
1 H. S. White, Linear systems of curves on algebraic surfaces
 F. S. Woods, Forms on noneuclidean space
 E. B. Van Vleck, Selected topics in the theory of divergent series and of continued fractions, 1905
Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras.

The exposition of this book covers the following topics:

- the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries;
- the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the chiral algebras of differential operators;
- the formalism of chiral homology treating "the space of conformal blocks" of the conformal field theory, which is a "quantum" counterpart of the space of the global solutions of a differential equation.

The book will be of interest to researchers working in algebraic geometry and its applications to mathematical physics and representation theory.