From Stein to Weinstein and Back

 Symplectic Geometry of Affine Complex ManifoldsKai Cieliebak
Yakov Eliashberg

From Stein to
 Weinstein and Back

Symplectic Geometry of Affine Complex Manifolds

American Mathematical Society

Colloquium Publications
Volume 59

From Stein to
 Weinstein and Back
 Symplectic Geometry of Affine Complex Manifolds

Kai Cieliebak
Yakov Eliashberg

American Mathematical Society
Providence, Rhode Island

EDITORIAL COMMITTEE

Lawrence C. Evans
Yuri Manin
Peter Sarnak (Chair)

2010 Mathematics Subject Classification. Primary 32Q28, 53D35.

For additional information and updates on this book, visit
www.ams.org/bookpages/coll-59

Library of Congress Cataloging-in-Publication Data

Cieliebak, Kai, 1966-
From Stein to Weinstein and back : symplectic geometry of affine complex manifolds / Kai Cieliebak, Yakov Eliashberg.
p. cm. - (Colloquium publications ; v. 59)

Includes bibliographical references and index.
ISBN 978-0-8218-8533-8 (alk. paper)

1. Symplectic geometry. 2. Stein manifolds. I. Eliashberg, Y., 1946- II. Title.

QA665.C54 2012
$515^{\prime} .946$ - dc 23
201219063

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.
(c) 2012 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government.

Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

$$
10987654321 \quad 171615141312
$$

To my parents, Snut and Hinrich. Kai
To Ada. Yasha

Contents

Preface xi
Chapter 1. Introduction 1
1.1. An overview 1
1.2. Plan of the book 6
Part 1. J-Convexity 9
Chapter 2. J-Convex Functions and Hypersurfaces 11
2.1. Linear algebra 11
2.2. J-convex functions 13
2.3. The Levi form of a hypersurface 15
2.4. Completeness 18
2.5. J-convexity and geometric convexity 19
2.6. Normalized Levi form and mean normal curvature 20
2.7. Examples of J-convex functions and hypersurfaces 22
2.8. Symplectic properties of J-convex functions 25
2.9. Computations in \mathbb{C}^{n} 27
Chapter 3. Smoothing 31
3.1. J-convexity and plurisubharmonicity 31
3.2. Smoothing of J-convex functions 34
3.3 . Critical points of J-convex functions 37
3.4. From families of hypersurfaces to J-convex functions 40
3.5. J-convex functions near totally real submanifolds 42
3.6. Functions with J-convex level sets 48
3.7. Normalized modulus of J-convexity 50
Chapter 4. Shapes for i-Convex Hypersurfaces 57
4.1. Main models 57
4.2. Shapes for i-convex hypersurfaces 59
4.3. Properties of i-convex shapes 64
4.4. Shapes in the subcritical case 67
4.5. Construction of special shapes 68
4.6. Families of special shapes 75
4.7. Convexity estimates 83
Chapter 5. Some Complex Analysis 89
5.1. Holomorphic convexity 89
5.2. Relation to J-convexity 90
5.3. Definitions of Stein manifolds 93
5.4. Hartogs phenomena 94
5.5. Grauert's Oka principle 96
5.6. Coherent analytic sheaves on Stein manifolds 99
5.7. Real analytic manifolds 101
5.8. Real analytic approximations 104
5.9. Approximately holomorphic extension of maps from totally real submanifolds 107
5.10. CR structures 108
Part 2. Existence of Stein Structures 113
Chapter 6. Symplectic and Contact Preliminaries 115
6.1. Symplectic vector spaces 115
6.2. Symplectic vector bundles 117
6.3. Symplectic manifolds 118
6.4. Moser's trick and symplectic normal forms 119
6.5. Contact manifolds and their Legendrian submanifolds 122
6.6. Contact normal forms 125
6.7. Real analytic approximations of isotropic submanifolds 127
6.8. Relations between symplectic and contact manifolds 128
Chapter 7. The h-principles 131
7.1. Immersions and embeddings 131
7.2. The h-principle for isotropic immersions 135
7.3. The h-principle for subcritical isotropic embeddings 136
7.4. Stabilization of Legendrian submanifolds 137
7.5. The existence theorem for Legendrian embeddings 139
7.6. Legendrian knots in overtwisted contact manifolds 141
7.7. Murphy's h-principle for loose Legendrian embeddings 142
7.8. Directed immersions and embeddings 146
7.9. Discs attached to J-convex boundaries 150
Chapter 8. The Existence Theorem 155
8.1. Some notions from Morse theory 155
8.2. Surrounding stable discs 156
8.3. Existence of complex structures 161
8.4. Existence of Stein structures in complex dimension $\neq 2$ 163
8.5. J-convex surrounding functions 167
8.6. J-convex retracts 171
8.7. Approximating continuous maps by holomorphic ones 174
8.8. Variations on a theme of E. Kallin 181
Part 3. Morse-Smale Theory for J-Convex Functions 185
Chapter 9. Recollections from Morse Theory 187
9.1. Critical points of functions 187
9.2. Zeroes of vector fields 189
9.3. Gradient-like vector fields 192
9.4. Smooth surroundings 198
9.5. Changing Lyapunov functions near critical points 200
9.6. Smale cobordisms 202
9.7. Morse and Smale homotopies 206
9.8. The h-cobordism theorem 210
9.9. The two-index theorem 212
9.10. Pseudo-isotopies 213
Chapter 10. Modifications of J-Convex Morse Functions 215
10.1. Moving attaching spheres by isotropic isotopies 215
10.2. Relaxing the J-orthogonality condition 222
10.3. Moving critical levels 223
10.4. Creation and cancellation of critical points 224
10.5. Carving one J-convex function with another one 225
10.6. Surrounding a stable half-disc 225
10.7. Proof of the cancellation theorem 231
10.8. Proof of the creation theorem 232
Part 4. From Stein to Weinstein and Back 235
Chapter 11. Weinstein Structures 237
11.1. Liouville cobordisms and manifolds 237
11.2. Liouville homotopies 239
11.3. Zeroes of Liouville fields 241
11.4. Weinstein cobordisms and manifolds 243
11.5. From Stein to Weinstein 244
11.6. Weinstein and Stein homotopies 245
11.7. Weinstein structures with unique critical points 249
11.8. Subcritical and flexible Weinstein structures 250
Chapter 12. Modifications of Weinstein Structures 253
12.1. Weinstein structures with given functions 253
12.2. Holonomy of Weinstein cobordisms 256
12.3. Liouville fields near isotropic submanifolds 258
12.4. Weinstein structures near critical points 263
12.5. Weinstein structures near stable discs 265
12.6. Morse-Smale theory for Weinstein structures 267
12.7. Elementary Weinstein homotopies 268
Chapter 13. Existence Revisited 271
13.1. Existence of Weinstein structures 271
13.2. From Weinstein to Stein: existence 273
13.3. Proof of the Stein existence theorems 275
Chapter 14. Deformations of Flexible Weinstein Structures 279
14.1. Homotopies of flexible Weinstein cobordisms 279
14.2. Proof of the first Weinstein deformation theorem 280
14.3. Proof of the second Weinstein deformation theorem 286
14.4. Subcritical Weinstein manifolds are split 288
14.5. Symplectic pseudo-isotopies 292
Chapter 15. Deformations of Stein Structures 295
15.1. From Weinstein to Stein: homotopies 295
15.2. Proof of the first Stein deformation theorem 298
15.3. Homotopies of flexible Stein structures 302
Part 5. Stein Manifolds and Symplectic Topology 305
Chapter 16. Stein Manifolds of Complex Dimension Two 307
16.1. Filling by holomorphic discs 307
16.2. Stein fillings 310
16.3. Stein structures on 4-manifolds 320
Chapter 17. Exotic Stein Structures 323
17.1. Symplectic homology 323
17.2. Exotic Stein structures 325
Appendix A. Some Algebraic Topology 329
A.1. Serre fibrations 329
A.2. Some homotopy groups 331
Appendix B. Obstructions to Formal Legendrian Isotopies 335
Appendix C. Biographical Notes on the Main Characters 343
C.1. Complex analysis 343
C.2. Differential and symplectic topology 348
Bibliography 353
Index 361

Preface

In Spring 1996 Yasha Eliashberg gave a Nachdiplomvorlesung (a one semester graduate course) "Symplectic geometry of Stein manifolds" at ETH Zürich. Kai Cieliebak, at the time a graduate student at ETH, was assigned the task to take notes for this course, with the goal of having lecture notes ready for publication by the end of the course. At the end of the semester we had some 70 pages of typed notes, but they were nowhere close to being publishable. So we buried the idea of ever turning these notes into a book.

Seven years later Kai spent his first sabbatical at the Mathematical Sciences Research Institute (MSRI) in Berkeley. By that time, through work of Donaldson and others on approximately holomorphic sections on the one hand, and gluing formulas for holomorphic curves on the other hand, Weinstein manifolds had been recognized as fundamental objects in symplectic topology. Encouraged by the increasing interest in the subject, we dug out the old lecture notes and began turning them into a monograph on Stein and Weinstein manifolds.

Work on the book has continued on and off since then, with most progress happening during Kai's numerous visits to Stanford University and another sabbatical 2009 that we both spent at MSRI. Over this period of almost 10 years, the content of the book has been repeatedly changed and its scope significantly extended. Some of these changes and extensions were due to our improved understanding of the subject (e.g., a quantitative version of J-convexity which is preserved under approximately holomorphic diffeomorphisms), others due to new developments such as the construction of exotic Stein structures by Seidel and Smith, McLean, and others since 2005, and Murphy's h-principle for loose Legendrian knots in 2011. In fact, the present formulation of the main theorems in the book only became clear about a year ago. As a result of this process, only a few lines of the original lecture notes have survived in the final text (in Chapters 2-4).

The purpose of the book has also evolved over the past decade. Our original goal was a complete and detailed exposition of the existence theorem for Stein structures in [42]. While this remains an important goal, which we try to achieve in Chapters $2-8$, the book has evolved around the following two broader themes: The first one, as indicated by the title, is the correspondence between the complex analytic notion of a Stein manifold and the symplectic notion of a Weinstein manifold. The second one is the extent to which these structures are flexible, i.e., satisfy an h-principle. In fact, until recently we believed the border between flexibility and rigidity to run between subcritical and critical structures, but Murphy's h-principle extends flexibility well into the critical range.

The book is roughly divided into "complex" and "symplectic" chapters. Thus Chapters 2-5 and 8-10 can be read as an exposition of the theory of J-convex
functions on Stein manifolds, while Chapters 6-7, 9 and 11-14 provide an introduction to Weinstein manifolds and their deformations. However, our selection of material on both the complex and symplectic side is by no means representative for the respective fields. Thus on the complex side we focus only on topological aspects of Stein manifolds, ignoring most of the beautiful subject of several complex variables. On the symplectic side, the most notable omission is the relationship between Weinstein domains and Lefschetz fibrations over the disc.

Over the past 16 years we both gave many lecture courses, seminars, and talks on the subject of this book not only at our home institutions, Ludwig-MaximiliansUniversität München and Stanford University, but also at various other places such as the Forschungsinstitut für Mathematik at ETH Zürich, University of Pennsylvania in Philadelphia, Columbia University in New York, the Courant Institute of Mathematical Sciences in New York, University of California in Berkeley, Washington University in St. Louis, the Mathematical Sciences Research Institute in Berkeley, the Institute for Advanced Study in Princeton, and the Alfréd Rényi Institute of Mathematics in Budapest. We thank all these institutions for their support and hospitality.

Many mathematicians and students who attended our lectures and seminars or read parts of preliminary versions of the book provided us with valuable comments and critical remarks. We are very grateful to all of them, and in particular to M. Abouzaid, S. Akbulut, J. Bowden, V. Braungardt, J. Daniel, T. Ekholm, C. Epstein, J. Etnyre, C. Fefferman, F. Forstnerič, U. Frauenfelder, A. Gerstenberger, R. Gompf, A. Huckleberry, P. Landweber, J. Latschev, L. Lempert, R. Lipshitz, C. Llosa Isenrich, D. McDuff, M. McLean, K. Mohnke, J. Morgan, E. Murphy, S. Nemirovski, L. Nirenberg, K. Nguyen, A. Oancea, N. Øvrelid, P. Ozsváth, L. Polterovich, P. Seidel, A. Stadelmaier, A. Stipsicz, D. Thurston, T. Vogel, E. Volkov, J. Wehrheim, and C. Wendl.

We thank G. Herold, T. Müller, and S. Prüfer for creating the figures, and J. Wright Sharp for her help with English and LaTeX.

And most of all, we thank our spouses, Suny and Ada, for their continued support.

Kai Cieliebak
Mathematisches Institut Ludwig-Maximilians-Universität

Theresienstr. 39
80333 München, Germany
Yakov Eliashberg
Department of Mathematics
Stanford University
Stanford, California 94305, USA

Bibliography

[1] A. Abbondandolo and M. Schwarz, On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59, no. 2, 254-316 (2006).
[2] A. Abbondandolo and M. Schwarz, Floer homology of cotangent bundles and the loop product, Geom. Topol. 14, no. 3, 1569-1722 (2010).
[3] M. Abouzaid and P. Seidel, Altering symplectic manifolds by homologous recombination, arXiv:1007.3281.
[4] R. Abraham and J. Robbin, Transversal Mappings and Flows, with an appendix by A. Kelley, Benjamin, New York-Amsterdam (1967).
[5] T. Akahori, A new approach to the local embedding theorem of CR-structures for $n \geq 4$ (the local solvability for the operator $\bar{\partial}_{b}$ in the abstract sense), Mem. Amer. Math. Soc. 67, no. 366 (1987).
[6] A. Akhmedov, J. Etnyre, T. Mark and I. Smith, A note on Stein fillings of contact manifolds, Math. Res. Lett. 15, 1127-1132 (2008).
[7] A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane sections, Ann. of Math. 69, 717-717 (1959).
[8] A. Andreotti and R. Narasimhan, A topological property of Runge pairs, Ann. of Math. 76, 499-509 (1962).
[9] V. I. Arnold, Ordinary Differential Equations, MIT Press, Cambridge, Massachusetts (1973).
[10] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer (1978).
[11] V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer (1983).
[12] W. Ballmann, Lectures on Kähler manifolds, ESI Lectures in Mathematics and Physics, European Mathematical Society, Zürich (2006).
[13] A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique, Comment. Math. Helv. 53, no. 2, 174-227 (1978).
[14] S. Batterson, Stephen Smale: The Mathematician Who Broke the Dimension Barrier, Amer. Math. Soc. (2000).
[15] E. Bedford and B. Gaveau, Envelopes of holomorphy of certain 2-spheres in \mathbb{C}^{2}, Amer. J. Math. 105, no. 4, 975-1009 (1983).
[16] D. Bennequin, Entrelacements et équations de Pfaff, Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried 1982), 87-161, Astérisque 107-108, Soc. Math. France, Paris (1983).
[17] P. Biran, Lagrangian barriers and symplectic embeddings, Geom. Funct. Anal. 11, no. 3, 407-464 (2001).
[18] E. Bishop, Mappings of partially analytic spaces, Amer. J. Math. 83, 209-242 (1961).
[19] E. Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. 32, 1-21 (1965).
[20] F. Bogomolov and B. de Oliveira, Stein small deformations of strictly pseudoconvex surfaces, Birational algebraic geometry (Baltimore, 1996), 25-41, Contemp. Math. 207, Amer. Math. Soc. (1997).
[21] R. Bott, The stable homotopy of the classical groups, Ann. of Math. (2) 70, 313-337 (1959).
[22] R. Bott, Marston Morse and his mathematical works, Bull. Amer. Math. Soc. 3, no. 3, 907-950 (1980).
[23] R. Bott and J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64, 87-91 (1958).
[24] F. Bourgeois, T. Ekholm and Y. Eliashberg, Effect of Legendrian Surgery, arXiv: 0911.0026.
[25] F. Bruhat and H. Whitney, Quelques propriétés fondamentales des ensembles analytiquesréels, Comment. Math. Helv. 33, 132-160 (1959).
[26] A. Cannas da Silva, Lectures on Symplectic Geometry, Springer (2001).
[27] H. Cartan, Variétés analytiques complexes et cohomologie, Colloque sur les fonctions de plusieurs variables (tenu à Bruxelles 1953), 41-55, Georges Thone, Liège; Masson \& Cie, Paris (1953).
[28] H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France 85, 77-99 (1957).
[29] D. Catlin, A Newlander-Nirenberg theorem for manifolds with boundary, Michigan Math. J. 35, no. 2, 233-240 (1988).
[30] J. Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39, 5-173 (1970).
[31] Y. Chekanov, Differential algebra of Legendrian links, Invent. Math. 150, no. 3, 441-483 (2002).
[32] K. Cieliebak, Handle attaching in symplectic homology and the chord conjecture, J. Eur. Math. Soc. (JEMS) 4, no. 2, 115-142 (2002).
[33] K. Cieliebak, Subcritical Stein manifolds are split, preprint 2002.
[34] K. Cieliebak, A. Floer and H. Hofer, Symplectic homology II: A general construction, Math. Z. 218, no. 1, 103-122 (1995).
[35] K. Cieliebak, U. Frauenfelder and A. Oancea, Rabinowitz Floer homology and symplectic homology, Ann. Sci. Éc. Norm. Supér. (4) 43, no. 6, 957-1015 (2010).
[36] J.-P. Demailly, Complex analytic and differential geometry, preliminary version available on the author's homepage, http://www-fourier.ujf-grenoble.fr/~demailly/books.html.
[37] P. De Paepe, Eva Kallin's lemma on polynomial convexity, Bull. London Math. Soc. 33, no. 1, 1-10 (2001).
[38] F. Docquier and H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140, 94-123 (1960).
[39] K. Dymara, Legendrian knots in overtwisted contact structures on S^{3}, Ann. Global Anal. Geom. 19, no. 3, 293-305 (2001).
[40] T. Ekholm, J. Etnyre and M. Sullivan, Non-isotopic Legendrian submanifolds in $\mathbb{R}^{2 n+1}$, J. Diff. Geom. 71, no. 1, 85-128 (2005).
[41] Y. Eliashberg, Classification of overtwisted contact structures on 3-manifolds, Invent. Math. 98, no. 3, 623-637 (1989).
[42] Y. Eliashberg, Topological characterization of Stein manifolds of dimension >2, Internat. J. Math. 1, no. 1, 29-46 (1990).
[43] Y. Eliashberg, Filling by holomorphic discs and its applications, London Math. Soc. Lect. Notes 151, 45-68 (1991).
[44] Y. Eliashberg, Contact 3-manifolds 20 years since J. Martinet's work, Ann. Inst. Fourier 42, 165-192 (1992).
[45] Y. Eliashberg, A few remarks about symplectic filling, Geom. Topol. 8, 277-293 (2004).
[46] Y. Eliashberg, Unique holomorphically fillable contact structure on the 3-torus, Internat. Math. Res. Notices 1996, no. 2, 77-82.
[47] Y. Eliashberg, Symplectic geometry of plurisubharmonic functions, Notes by M. Abreu, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Gauge theory and symplectic geometry (Montreal, 1995), 49-67, Kluwer Acad. Publ. (1997).
[48] Y. Eliashberg and M. Fraser, Topologically trivial Legendrian knots, J. Symp. Geom. 7, no. 2, 77-127 (2009).
[49] Y. Eliashberg and M. Gromov, Convex Symplectic Manifolds, Proceedings of Symposia in Pure Mathematics, vol. 52, Part 2, 135-162 (1991).
[50] Y. Eliashberg and M. Gromov, Embeddings of Stein manifolds of dimension n into the affine space of dimension $3 n / 2+1$, Ann. of Math. 136, 123-135 (1992).
[51] Y. Eliashberg and V. Kharlamov, On the number of complex points of a real surface in a complex surface, Proc. Leningrad International Topology Conference, Leningrad, 1982, 143-148 (1984).
[52] Y. Eliashberg and N. Mishachev, Introduction to the h-Principle, Graduate Studies in Mathematics 48, Amer. Math. Soc. (2002).
[53] J. Etnyre, Introductory lectures on contact geometry, Topology and geometry of manifolds (Athens, GA, 2001), 81-107, Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003).
[54] J. Etnyre, On Symplectic Fillings, Algebr. Geom. Topol. 4, 73-80 (2004).
[55] J. Etnyre, Legendrian and Transversal Knots, Handbook of Knot Theory, 105-185, Elsevier (2005).
[56] J. Etnyre and K. Honda, On the nonexistence of tight contact structures, Ann. of Math. (2) 153, no. 3, 749-766 (2001).
[57] A. Floer and H. Hofer, Symplectic homology I: Open sets in C^{n}, Math. Z. 215, no. 1, 37-88 (1994).
[58] G. Folland, Introduction to Partial Differential Equations, Princeton Univ. Press (1976).
[59] J. E. Fornaess and B. Stens $ø$ nes, Lectures on Counterexamples in Several Complex Variables, Princeton Univ. Press (1987), reprinted by AMS Chelsea (2007).
[60] F. Forstnerič, Stein Manifolds and Holomorphic Mappings, Springer (2011).
[61] F. Forstnerič and F. Lárusson, Survey of Oka theory, New York J. Math. 17a, 1-28 (2011).
[62] F. Forstnerič, E. Løw and N. Øvrelid, Solving the d-and $\bar{\partial}$-equations in thin tubes and applications to mappings, Michigan Math. J. 49, 369-416 (2001).
[63] F. Forstnerič and M. Slapar, Stein structures and holomorphic mappings, Math. Z. 256, no. 3, 615-646 (2007).
[64] H. Geiges, Symplectic manifolds with disconnected boundary of contact type, Int. Math. Res. Not. 1994, no. 1, 23-30.
[65] H. Geiges, An Introduction to Contact Topology, Cambridge Univ. Press (2008).
[66] E. Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66, no. 4, 637-677 (1991).
[67] E. Giroux, Une infinité de structures de contact tendues sur une infinité de variétés, Invent. Math. 135, 789-802 (1999).
[68] E. Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141, no. 3, 615-689 (2000).
[69] R. Gompf, A new construction of symplectic manifolds, Ann. of Math. 142, 527-595 (1995).
[70] R. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148, no. 2, 619-693 (1998).
[71] R. Gompf, Stein surfaces as open subsets of \mathbb{C}^{2}, Conference on Symplectic Topology, J. Symp. Geom. 3, no. 4, 565-587 (2005).
[72] R. Gompf, Constructing Stein manifolds after Eliashberg, New perspectives and challenges in symplectic field theory, 229-249, CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009).
[73] R. Gompf, Smooth embeddings with Stein surface images, arXiv:1110.1865.
[74] R. Gompf and A. Stipsicz, 4-Manifolds and Kirby Calculus, Amer. Math. Soc. (1999).
[75] J. Gray, Some global properties of contact structures, Ann. of Math. (2) 69, 421-450 (1959).
[76] H. Grauert, Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann. 133, 450-472 (1957).
[77] H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68, 460-472 (1958).
[78] H. Grauert and R. Remmert, Theory of Stein Spaces, Springer (1979).
[79] H. Grauert and R. Remmert, Coherent Analytic Sheaves, Springer (1984).
[80] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley \& Sons, New York (1978).
[81] M. Gromov, A topological technique for the construction of solutions of differential equations and inequalities, ICM 1970, Nice, vol. 2, 221-225 (1971).
[82] M. Gromov, Convex integration of differential relations I, Izv. Akad. Nauk SSSR Ser. Mat. 37, 329-343 (1973).
[83] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82, no. 2, 307-347 (1985).
[84] M. Gromov, Partial Differential Relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 9, Springer (1986).
[85] M. Gromov, Oka's principle for holomorphic sections of elliptic bundles, J. Amer. Math. Soc. 2, 851-897 (1989).
[86] M. Gromov and Y. Eliashberg, Removal of singularities of smooth maps, Izv. Akad. Nauk SSSR Ser. Mat. 35, 600-626 (1971).
[87] V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, Englewood Cliffs, New Jersey (1974).
[88] R. Gunning, Introduction to Holomorphic Functions of Several Variables, Vol. III: Homological Theory, Wadsworth \& Brooks/Cole, Belmont (1990).
[89] R. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall (1965), reprinted by AMS Chelsea (2009).
[90] A. Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36, 47-82 (1961).
[91] A. Hatcher, Algebraic Topology, Cambridge Univ. Press (2002).
[92] A. Hatcher and J. Wagoner, Pseudo-isotopies of compact manifolds, Astérisque 6, Soc. Math. de France (1973).
[93] G. Henkin and J. Leiterer, Theory of functions on complex manifolds, Monographs in Mathematics 79, Birkhäuser (1984).
[94] C. D. Hill and M. Nacinovich, Stein fillability and the realization of contact manifolds, Proc. Amer. Math. Soc. 133, no. 6, 1843-1850 (2005).
[95] R. Hind, Stein fillings of lens spaces, Commun. Contemp. Math. 5, no. 6, 967-982 (2003).
[96] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero I, II, Ann. of Math. 79, 109-326 (1964).
[97] M. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93, 242-276 (1959).
[98] M. Hirsch, Differential Topology, Springer (1976).
[99] H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114, no. 3, 515-563 (1993).
[100] H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser (1994).
[101] K. Honda, On the classification of tight contact structures I, Geom. Topol. 4, 309-368 (2000).
[102] L. Hörmander, L^{2} estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math. 113, 89-152 (1965).
[103] L. Hörmander, An Introduction to Complex Analysis in Several Variables, D. Van Nostrand Co., Princeton (1966), 3rd edition North-Holland (1990).
[104] L. Hörmander and J. Wermer, Uniform approximation on compact sets in C^{n}, Math. Scand. 23, 5-23 (1968).
[105] A. Huckleberry, Hans Grauert: mathematician pur, Mitt. Deutsche Math.-Verein. 16, no. 2, 75-77 (2008).
[106] A. Huckleberry, Karl Stein (1913-2000), Jahresber. Deutsch. Math.-Verein. 110, no. 4, 195-206 (2008).
[107] K. Igusa, The stability theorem for smooth pseudoisotopies, K-Theory 2, no. 1-2 (1988).
[108] H. Jacobowitz, An Introduction to CR Structures, Mathematical Surveys and Monographs 32, Amer. Math. Soc. (1990).
[109] E. Kallin, Fat polynomially convex sets, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965), Scott-Foresman, 149-152 (1966).
[110] Y. Kanda, The classification of tight contact structures on the 3-torus, Comm. Anal. Geom. 5, no. 3, 413-438 (1997).
[111] M. Kervaire, Non-parallelizability of the n-sphere for $n>7$, Proc. Nat. Acad. of Sci. USA 44, 280-283 (1958).
[112] M. Kervaire, Le théorème de Barden-Mazur-Stallings, Comment. Math. Helv. 40, 31-42 (1965).
[113] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, Interscience Tracts in Pure and Applied Mathematics No. 15 Vol. II, John Wiley \& Sons, New York (1969).
[114] J. Kohn and H. Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. 81, 451-472 (1965).
[115] A. Kosinski, Differential Manifolds, Pure and Applied Mathematics 138, Academic Press, Boston (1993).
[116] S. Krantz, Function Theory of Several Complex Variables, John Wiley \& Sons, New York (1982), 2nd edition reprinted by AMS Chelsea (2001).
[117] P. Kronheimer and T. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1, no. 6, 797-808 (1994).
[118] M. Kuranishi, Strongly pseudo-convex CR structures over small balls, Part III, Ann. of Math. 116, 249-330 (1982).
[119] H.-F. Lai, Characteristic classes of real manifolds immersed in complex manifolds, Trans. Amer. Math. Soc. 172, 1-33 (1972).
[120] P. Landweber, Complex structures on open manifolds, Topology 13, 69-75 (1974).
[121] S. Lefschetz, L’Analysis situs et la géométrie algébrique, Collection de Monographies publiée sous la direction de M. Emile Borel, Gauthier-Villars, Paris (1924).
[122] L. Lempert, Algebraic approximations in analytic geometry, Invent. Math. 121, no. 2, 335353 (1995).
[123] P. Lisca, Symplectic fillings and positive scalar curvature, Geom. Topol. 2, 103-116 (1998).
[124] P. Lisca, On symplectic fillings of lens spaces, Trans. Amer. Math. Soc. 360, 765-799 (2008).
[125] P. Lisca and G. Matič, Tight contact structures and Seiberg-Witten invariants, Invent. Math. 129, 509-525 (1997).
[126] R. Lutz, Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier (Grenoble) 27, 1-15 (1977).
[127] J. Marsden and T. Ratiu (eds.), The breadth of symplectic and Poisson geometry, Birkhäuser (2005).
[128] J. Martinet, Formes de contact sur les variétés de dimension 3, Proceedings of Liverpool Singularities Symposium II (1969/1970), 142-163, Lecture Notes in Math. 209, Springer (1971).
[129] J. Martinet, Singularities of Smooth Functions and Maps, Cambridge Univ. Press (1982).
[130] P. Massot, K. Niederkrüger and C. Wendl, Weak and strong fillability of higher dimensional contact manifolds, arXiv:1111.6008.
[131] M. Maydanskiy, Exotic symplectic manifolds from Lefschetz fibrations, arXiv:0906.2224.
[132] M. Maydanskiy and P. Seidel, Lefschetz fibrations and exotic symplectic structures on cotangent bundles of spheres, J. Topol. 3, no. 1, 157-180 (2010).
[133] D. McDuff, Symplectic manifolds with contact type boundaries, Invent. Math. 103, no. 3, 651-671 (1991).
[134] D. McDuff, Blow ups and symplectic embeddings in dimension 4, Topology 30, 409-421 (1991).
[135] D. McDuff, The local behavior of holomorphic curves in almost complex manifolds, J. Diff. Geom. 34, 143-164 (1991).
[136] D. McDuff and D. Salamon, Introduction to Symplectic Topology, 2nd edition, Oxford Univ. Press (1998).
[137] M. McLean, Lefschetz fibrations and symplectic homology, Geom. Topol. 13, no. 4, 18771944 (2009).
[138] M. Micallef and B. White, The structure of branch points in minimal surfaces and in pseudoholomorphic curves, Ann. of Math. 141, 35-85 (1995).
[139] J. Milnor, Morse Theory, Based on lecture notes by M. Spivak and R. Wells, Annals of Mathematics Studies 51, Princeton University Press, Princeton (1963).
[140] J. Milnor, Lectures on the h-Cobordism Theorem, Notes by L. Siebenmann and J. Sondow, Princeton Univ. Press, Princeton (1965).
[141] J. Morgan and G. Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs 3, Amer. Math. Soc. (2007).
[142] J. Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. of Math. 72, 521-554 (1960).
[143] E. Murphy, Loose Legendrian embeddings in high dimensional contact manifolds, arXiv:1201.2245.
[144] R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math. 82, 917-934 (1960).
[145] R. Narasimhan, A note on Stein spaces and their normalisations, Ann. Scuola Norm. Sup. Pisa (3) 16, no. 4, 327-333 (1962).
[146] A. Némethi and P. Popescu-Pampu, Milnor fibers of cyclic quotient singularities, arXiv:0805.3449v2.
[147] S. Nemirovski, Complex analysis and differential topology on complex surfaces, Russian Math. Surveys 54, no. 4, 729-752 (1999).
[148] S. Nemirovski, Adjunction inequality and coverings of Stein surfaces, Turkish J. Math. 27, no. 1, 161-172 (2003).
[149] A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65, 391-404 (1957).
[150] L. Ng, A Legendrian Thurston-Bennequin bound from Khovanov homology, Algebr. Geom. Topol. 5, 1637-1653 (2005).
[151] K. Niederkrüger and O. van Koert, Every contact manifold can be given a nonfillable contact structure, Int. Math. Res. Not. IMRN 2007, no. 23.
[152] A. Nijenhuis and W. Wolf, Some integration problems in almost complex manifolds, Ann. of Math. (2) 77, 424-489, (1963).
[153] L. Nirenberg, Lectures on linear partial differential equations, Amer. Math. Soc. (1973).
[154] K. Oka, Sur les fonctions analytiques de plusieurs variables VII: Sur quelques notions arithmétiques, Bull. Soc. Math. France 78, 1-27 (1950).
[155] Kiyoshi Oka: Collected papers, translated from the French by R. Narasimhan, with commentaries by H. Cartan, edited by R. Remmert, Springer (1984).
[156] B. Ozbagci and A. Stipsicz, Contact 3-manifolds with infinitely many Stein fillings, Proc. Amer. Math. Soc. 132, 1549-1558 (2004).
[157] J. Palis and W. de Melo, Geometric theory of dynamical systems: An introduction, Springer (1982).
[158] G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain threemanifolds, arXiv:math/0307245.
[159] O. Plamenevskaya and J. Van Horn-Morris, Planar open books, monodromy factorizations and symplectic fillings, Geom. Topol. 14, no. 4, 2077-2101 (2010).
[160] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer (1986).
[161] R. Richberg, Stetige streng pseudokonvexe Funktionen, Math. Annalen 175, 251-286 (1968).
[162] A. Ritter, Topological quantum field theory structure on symplectic cohomology, arXiv:1003.1781.
[163] H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary, Proc. Conf. Complex Analysis (Minneapolis, 1964), 242-256, Springer (1965).
[164] L. Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. 29, 51-59 (1993).
[165] D. Salamon and J. Weber, Floer homology and the heat flow, Geom. Funct. Anal. 16, no. 5, 1050-1138 (2006).
[166] J. Schürmann, Embeddings of Stein spaces into affine spaces of minimal dimension, Math. Ann. 307, no. 3, 381-399 (1997).
[167] P. Seidel and I. Smith, The symplectic topology of Ramanujam's surface, Comment. Math. Helv. 80, no. 4, 859-881 (2005).
[168] P. Seidel, Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, European Math. Soc. (2008).
[169] P. Seidel, A biased view of symplectic cohomology, Current Developments in Mathematics, 2006, 211-253, Int. Press (2008).
[170] J-P. Serre, Quelques problèmes globaux relatifs aux variétés de Stein, Colloque sur les fonctions de plusieurs variables (Bruxelles, 1953), 57-68, Georges Thone, Liège; Masson \& Cie, Paris (1953).
[171] S. Smale, A classification of immersions of the two-sphere, Trans. Amer. Math. Soc. 90, 281-290 (1958).
[172] S. Smale, The classification of immersions of spheres in Euclidean spaces, Ann. of Math. 69, 327-344 (1959).
[173] S. Smale, On the structure of manifolds, Amer. J. Math. 84, 387-399 (1962).
[174] I. Smith, Torus fibrations on symplectic four-manifolds, Turkish J. Math. 25, 69-95 (2001).
[175] J. Sotomayor, Generic bifurcations of dynamical systems, Dynamical Systems (Proc. Sympos. Univ. Bahia, Salvador, 1971), Academic Press, 561-582 (1973).
[176] J. Stallings, The piecewise-linear structure of Euclidean space, Proc. Cambridge Philos. Soc. 58, 481-488 (1962).
[177] N. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton (1951).
[178] K. Stein, Analytische Funktionen mehrerer komplexer Veränderlichen zu vorgegebenen Periodizitätsmoduln und das zweite Cousinsche Problem, Math. Ann. 123, 201-222 (1951).
[179] E. Stout, Polynomial Convexity, Birkhäuser (2007).
[180] D. Struppa, The first eighty years of Hartogs' theorem, Geometry Seminars 1987-1988, Univ. Stud. Bologna, 127-209 (1988).
[181] D. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Invent. Math. 36, 225-255 (1976).
[182] S. Tabachnikov, An invariant of a submanifold that is transversal to a distribution (Russian), Uspekhi Mat. Nauk 43 (1988), no. 3 (261), 193-194; translation in Russian Math. Surveys 43, no. 3, 225-226 (1988).
[183] R. Thompson, Singular values and diagonal elements of complex symmetric matrices, Linear Algebra Appl. 26, 65-106 (1979).
[184] W. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55, no. 2, 467-468 (1976).
[185] C. Viterbo, Functors and computations in Floer homology with applications I, Geom. Funct. Anal. 9, no. 5, 985-1033 (1999).
[186] A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Math. 6, 329-346 (1971).
[187] A. Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20, 241-251 (1991).
[188] C. Wendl, Strongly fillable contact manifolds and J-holomorphic foliations, Duke Math. J. 151, no. 3, 337-384 (2010).
[189] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36, no. 1, 63-89 (1934).
[190] H. Whitney, Differentiable manifolds, Ann. of Math. (2) 37, no. 3, 645-680 (1936).
[191] H. Whitney, The self-intersections of a smooth n-manifold in $2 n$-space, Ann. of Math. (2) 45, 220-246 (1944).
[192] H. Whitney, On singularities of mappings of Euclidean spaces I. Mappings of the plane into the plane, Ann. of Math. (2) 62, no. 3, 374-410 (1955).
[193] H. Whitney, Interview with A. Tucker and W. Aspray, 10 April 1984, The Princeton Mathematics Community in the 1930s, Transcript Number 43 (PMC43), The Trustees of Princeton University (1985).
[194] W.-T. Wu, On the isotopy of C^{r}-manifolds of dimension n in euclidean $(2 n+1)$-space, Sci. Record (N.S.) 2 271-275 (1958).
[195] R. Ye, Filling by holomorphic curves in symplectic 4-manifolds, Trans. Amer. Math. Soc. 350, no. 1, 213-250 (1998).

Index

admissible partition, 203, 207
almost complex
manifold, 13
structure, 4,13
almost CR manifold, 146
ample set, 146
analytic
polyhedron, 89
subvariety, 100
backward invariant set, 199
Bennequin's inequality, 341
birth-death type
critical point, 188
zero, 191
Bishop family, 309
Bott periodicity theorem, 333
boundary connected sum, 321, 325
cancellation family, 207
Cartan's Theorems A and B, 100
carving, 225
center manifold, 190
Chern class, 117
cobordism, 156
coherent analytic sheaf, 99
coisotropic
neighborhood theorem, 122
submanifold, 119
subspace, 115
compatible pair, 116-118
complete
-ly exhausting function, 19
vector field, 18
completion
of Liouville domain, 239
of Weinstein domain, 243
complex
-ification, 101
curve, 32
manifold, 13
structure, 13
subspace, 117
surface, 5
vector space, 11
concatenation of paths, 140
conformal symplectic normal bundle, 126
contact
form, 26
isotopy extension theorem, 127
structure, 26, 122
contactomorphism, 122
CR
manifold, 108
structure, 108
totally real immersion, 147
creation family, 207
Darboux's theorem, 118, 125
deformation equivalence, 311
diffeotopy, 120
directed immersion, 147
domain of holomorphy, 95
elementary
Lyapunov cobordism, 203
Morse cobordism, 156
Smale cobordism, 203
Smale homotopy, 207
embryonic
critical point, 188
zero, 190
end
connected sum, 326
of a 4-manifold, 320
exact
Lagrangian immersion, 118
symplectic manifold, 118, 237
symplectic map, 237
exhausting function, 1
field of complex tangencies, 15
finite type, 4, 238
flexible
Stein structure, 251
Weinstein structure, 251
flow box, 198
formal
directed embedding, 148
isotropic embedding, 136
isotropic isotopy, 137
Legendrian embedding, 136
Forstnerič-Slapar theorem, 180
front projection, 123
generalized Morse function, 1
Gompf's theorem, 4, 163, 322
gradient
-like vector field, 155, 192
vector field, 15,18
Grassmannian, 332
Grauert
Oka principle, 96
theorem, 94
tube, 103
Gray's stability theorem, 127
Gromov, 131, 306
-Landweber theorem, 161
h-cobordism theorem, 210
h-principle
for CR totally real embeddings, 149
for directed embeddings, 148
for directed immersions, 147
for immersions, 131
for isotropic embeddings, 137
for isotropic immersions, 135
for loose Legendrian embeddings, 145
for totally real embeddings, 148
for totally real immersions, 147
for totally real submersions, 149
Hörmander-Wermer theorem, 174
handle slide, 212
Hartogs phenomenon, 94
Hermitian
form, 11
metric, 11
structure, 116, 117
vector space, 116
Hessian, 14, 15
Hironaka's theorem, 109
holomorphic
convexity, 89
filling, 108, 129
hull, 89
line bundle, 24
holonomy, 209, 239, 256
homotopy
fiber, 330
lifting property, 329
hyperbolic zero, 25, 190
i-convex
function, 1
shape, 66
index
of critical point, 14,187
of zero of vector field, 190
integrable almost complex structure, 13
isocontact immersion, 126
isotopy, 133
isotropic
immersion, 123
isotopy, 137
monomorphism, 135
neighborhood theorem, 121, 126
setup, 126
submanifold, 26, 119
subspace, 115
J-convex
CR structure, 108
function, 1, 13, 33
hypersurface, 16
pseudo-isotopy, 6, 303
quadratic form, 12
retract, 171
surrounding, 156
surrounding function, 167
J-lc function, 48
J-orthogonal, 26, 169
J-transverse, 154
Kähler
filling, 109
form, 119
manifold, 14
metric, 119
Kallin's lemma, 183
knot, 131
Lagrangian
neighborhood theorem, 122
projection, 123
submanifold, 119
subspace, 115
Legendrian
immersion, 123
isotopy, 141
knot, 141
monomorphism, 135
Levi
-flat hypersurface, 16
form, 16
problem, 91
Liouville
cobordism, 239
domain, 239
field, 25,237
form, 25, 237
homotopy, 239
manifold, 237
loose Legendrian submanifold, 143
lower half-disc, 204
Lyapunov
cobordism, 202
function, 192
pair, 192
McLean's theorem, 326
mean normal curvature, 21
minimal complex surface, 5, 308
modulus
of J-convexity, 33
of subharmonicity, 31
mollified function, 35
monomorphism, 131
Morse
-Smale theory, 210
cobordism, 156
function, 1, 187
homotopy, 207, 246
index of critical point, 14,187
index of zero of vector field, 190
inequalities, 210
lemma, 187
Moser
stability theorem, 120
trick, 119
Murphy's h-principle, 145
Narasimhan's theorem, 20
negative line bundle, 24
Newlander-Nirenberg theorem, 13
Nijenhuis tensor, 13
nondegenerate
2-form, 25
critical point, 187
zero, 190
normalized
Levi form, 21
modulus of J-convexity, 50
nullity, 187
Oka
-Weil theorem, 90
coherence theorem, 99
principle, 96
ω
-convex, 128
-limit set, 198
-orthogonal complement, 115
$\mathcal{O} p A, 7$
overtwisted
contact structure, 141
disc, 141
path lifting property, 329
Perelman's theorem, 320
perfect Morse function, 210
plurisubharmonic
function, 1,33
hull, 92
Poincaré-Hopf index theorem, 139
polynomial
convexity, 89
hull, 89
positive line bundle, 24
profile, 188, 208
pseudo-isotopy, 5, 213
real analytic
function, 101
manifold, 101
reducible 3 -manifold, 315
Reeb vector field, 122
Richberg's theorem, 34
Rossi's theorem, 109
rotation invariant, 337
absolute, 337
second fundamental form, 21
self-indexing Morse function, 211
self-intersection
index of immersion, 132
index of regular homotopy, 133
invariant, 338
Serre fibration, 209, 329
shape of hypersurface, 60
skeleton, 155, 198, 238
Smale
-Hirsch immersion theorem, 131
cobordism, 203
h-cobordism theorem, 210
homotopy, 207, 246
trick, 212
stabilization
of Legendrian submanifold, 137
of Weinstein manifold, 243
stable
disc, 156, 203
homotopy group, 333
manifold, 25, 190
standard
complex structure, 1
contact structure, 123
symplectic form, 11
Stein
cobordism, 164, 244
domain, 2, 244
filling, 109, 310
homotopy, 246
manifold, 1, 93, 244
structure, 5, 244
submanifold, 94
surface, 4
Stiefel manifold, 332
Struwe's differential equation, 68
subcritical
Stein structure, 250
Weinstein structure, 250
subharmonic function, 31
surgery, 316
exact sequence, 325
symplectic
basis, 116
filling, 129
form, 25
group, 117
homology, 324
manifold, 118
neighborhood theorem, 121
normal bundle, 126
pseudo-isotopy, 292
structure, 117
submanifold, 119
subspace, 115
vector space, 115
symplectization, 128
symplectomorphism, 118
tame almost complex structure, 308
target
equivalent function, 2
reparametrization, 2
Thurston-Bennequin invariant
absolute, 339
relative, 339
tight contact structure, 141
totally real
epimorphism, 149
submanifold, 22
submersion, 149
subspace, 116
transfer map, 324
two-index theorem, 212
unstable
disc, 203
manifold, 190
weak
-ly J-convex, 13, 16, 98
-ly gradient-like vector field, 192
Lyapunov function, 192
Lyapunov pair, 192
Weinstein
cobordism, 243
domain, 3, 243
filling, 244
homotopy, 246
Lagrangian neighborhood theorem, 122
manifold, 2, 243
structure, 2, 243
Whitney
disc, 133
embedding theorem, 132
trick, 133

A beautiful and comprehensive introduction to this important field.

—Dusa McDuff, Barnard College, Columbia University

This excellent book gives a detailed, clear, and wonderfully written treatment of the interplay between the world of Stein manifolds and the more topological and flexible world of Weinstein manifolds. Devoted to this subject with a long history, the book serves as a superb introduction to this area and also contains the authors' new results.
—Tomasz Mrowka, MIT
This book is devoted to the interplay between complex and symplectic geometry in affine complex manifolds. Affine complex (a.k.a. Stein) manifolds have canonically built into them symplectic geometry which is responsible for many phenomena in complex geometry and analysis. The goal of the book is the exploration of this symplectic geometry (the road from "Stein to Weinstein") and its applications in the complex geometric world of Stein manifolds (the road "back"). This is the first book which systematically explores this connection, thus providing a new approach to the classical subject of Stein manifolds. It also contains the first detailed investigation of Weinstein manifolds, the symplectic counterparts of Stein manifolds, which play an important role in symplectic and contact topology.
Assuming only a general background from differential topology, the book provides introductions to the various techniques from the theory of functions of several complex variables, symplectic geometry, h-principles, and Morse theory that enter the proofs of the main results. The main results of the book are original results of the authors, and several of these results appear here for the first time. The book will be beneficial for all students and mathematicians interested in geometric aspects of complex analysis, symplectic and contact topology, and the interconnections between these subjects.

For additional information

