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Preface

In Spring 1996 Yasha Eliashberg gave a Nachdiplomvorlesung (a one semester
graduate course) “Symplectic geometry of Stein manifolds” at ETH Zürich. Kai
Cieliebak, at the time a graduate student at ETH, was assigned the task to take
notes for this course, with the goal of having lecture notes ready for publication by
the end of the course. At the end of the semester we had some 70 pages of typed
notes, but they were nowhere close to being publishable. So we buried the idea of
ever turning these notes into a book.

Seven years later Kai spent his first sabbatical at the Mathematical Sciences
Research Institute (MSRI) in Berkeley. By that time, through work of Donaldson
and others on approximately holomorphic sections on the one hand, and gluing
formulas for holomorphic curves on the other hand, Weinstein manifolds had been
recognized as fundamental objects in symplectic topology. Encouraged by the in-
creasing interest in the subject, we dug out the old lecture notes and began turning
them into a monograph on Stein and Weinstein manifolds.

Work on the book has continued on and off since then, with most progress hap-
pening during Kai’s numerous visits to Stanford University and another sabbatical
2009 that we both spent at MSRI. Over this period of almost 10 years, the con-
tent of the book has been repeatedly changed and its scope significantly extended.
Some of these changes and extensions were due to our improved understanding of
the subject (e.g., a quantitative version of J-convexity which is preserved under ap-
proximately holomorphic diffeomorphisms), others due to new developments such
as the construction of exotic Stein structures by Seidel and Smith, McLean, and
others since 2005, and Murphy’s h-principle for loose Legendrian knots in 2011. In
fact, the present formulation of the main theorems in the book only became clear
about a year ago. As a result of this process, only a few lines of the original lecture
notes have survived in the final text (in Chapters 2–4).

The purpose of the book has also evolved over the past decade. Our original goal
was a complete and detailed exposition of the existence theorem for Stein structures
in [42]. While this remains an important goal, which we try to achieve in Chapters
2–8, the book has evolved around the following two broader themes: The first one,
as indicated by the title, is the correspondence between the complex analytic notion
of a Stein manifold and the symplectic notion of a Weinstein manifold. The second
one is the extent to which these structures are flexible, i.e., satisfy an h-principle.
In fact, until recently we believed the border between flexibility and rigidity to
run between subcritical and critical structures, but Murphy’s h-principle extends
flexibility well into the critical range.

The book is roughly divided into “complex” and “symplectic” chapters. Thus
Chapters 2–5 and 8–10 can be read as an exposition of the theory of J-convex

xi
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functions on Stein manifolds, while Chapters 6–7, 9 and 11–14 provide an intro-
duction to Weinstein manifolds and their deformations. However, our selection of
material on both the complex and symplectic side is by no means representative
for the respective fields. Thus on the complex side we focus only on topological as-
pects of Stein manifolds, ignoring most of the beautiful subject of several complex
variables. On the symplectic side, the most notable omission is the relationship
between Weinstein domains and Lefschetz fibrations over the disc.

Over the past 16 years we both gave many lecture courses, seminars, and talks
on the subject of this book not only at our home institutions, Ludwig-Maximilians-
Universität München and Stanford University, but also at various other places such
as the Forschungsinstitut für Mathematik at ETH Zürich, University of Pennsyl-
vania in Philadelphia, Columbia University in New York, the Courant Institute of
Mathematical Sciences in New York, University of California in Berkeley, Wash-
ington University in St. Louis, the Mathematical Sciences Research Institute in
Berkeley, the Institute for Advanced Study in Princeton, and the Alfréd Rényi
Institute of Mathematics in Budapest. We thank all these institutions for their
support and hospitality.

Many mathematicians and students who attended our lectures and seminars
or read parts of preliminary versions of the book provided us with valuable com-
ments and critical remarks. We are very grateful to all of them, and in particular
to M. Abouzaid, S. Akbulut, J. Bowden, V. Braungardt, J. Daniel, T. Ekholm,
C. Epstein, J. Etnyre, C. Fefferman, F. Forstnerič, U. Frauenfelder, A. Gersten-
berger, R. Gompf, A. Huckleberry, P. Landweber, J. Latschev, L. Lempert, R. Lip-
shitz, C. Llosa Isenrich, D. McDuff, M. McLean, K. Mohnke, J. Morgan, E. Mur-
phy, S. Nemirovski, L. Nirenberg, K. Nguyen, A. Oancea, N. Øvrelid, P. Ozsváth,
L. Polterovich, P. Seidel, A. Stadelmaier, A. Stipsicz, D. Thurston, T. Vogel,
E. Volkov, J. Wehrheim, and C. Wendl.

We thank G. Herold, T. Müller, and S. Prüfer for creating the figures, and
J. Wright Sharp for her help with English and LaTeX.

And most of all, we thank our spouses, Suny and Ada, for their continued
support.

Kai Cieliebak

Mathematisches Institut
Ludwig-Maximilians-Universität

Theresienstr. 39
80333 München, Germany

Yakov Eliashberg

Department of Mathematics
Stanford University

Stanford, California 94305, USA
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Forstnerič–Slapar theorem, 180
front projection, 123

generalized Morse function, 1

Gompf’s theorem, 4, 163, 322
gradient

-like vector field, 155, 192
vector field, 15, 18

Grassmannian, 332
Grauert

Oka principle, 96
theorem, 94
tube, 103

Gray’s stability theorem, 127
Gromov, 131, 306

–Landweber theorem, 161

h-cobordism theorem, 210
h-principle

for CR totally real embeddings, 149
for directed embeddings, 148
for directed immersions, 147

for immersions, 131
for isotropic embeddings, 137

for isotropic immersions, 135
for loose Legendrian embeddings, 145

for totally real embeddings, 148
for totally real immersions, 147

for totally real submersions, 149
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This excellent book gives a detailed, clear, and wonderfully written treatment of the 
interplay between the world of Stein manifolds and the more topological and flex-
ible world of Weinstein manifolds. Devoted to this subject with a long history, the 
book serves as a superb introduction to this area and also contains the authors’ new 
results.

—Tomasz Mrowka, MIT

This book is devoted to the interplay between complex and symplectic geometry in 
affine complex manifolds. Affine complex (a.k.a. Stein) manifolds have canonically 
built into them symplectic geometry which is responsible for many phenomena 
in complex geometry and analysis. The goal of the book is the exploration of this 
symplectic geometry (the road from “Stein to Weinstein”) and its applications in the 
complex geometric world of Stein manifolds (the road “back”). This is the first book 
which systematically explores this connection, thus providing a new approach to the 
classical subject of Stein manifolds. It also contains the first detailed investigation 
of Weinstein manifolds, the symplectic counterparts of Stein manifolds, which play 
an important role in symplectic and contact topology.

Assuming only a general background from differential topology, the book provides 
introductions to the various techniques from the theory of functions of several com-
plex variables, symplectic geometry, h-principles, and Morse theory that enter the 
proofs of the main results. The main results of the book are original results of the 
authors, and several of these results appear here for the first time. The book will 
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of complex analysis, symplectic and contact topology, and the interconnections 
between these subjects.
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