

Differential Analysis in Infinite Dimensional Spaces

Proceedings of an AMS Special Session held August 8-10, 1983

CONTEMPORARY MATHEMATICS

Titles in This Series

Volume

1 Markov random fields and their applications, Ross Kindermann and J. Laurie Snell

2 Proceedings of the conference on integration, topology, and geometry in linear spaces, William H. Graves, Editor
3 The closed graph and P-closed graph properties in general topology, T. R. Hamlett and L. L. Herrington

4 Problems of elastic stability and vibrations, Vadim Komkov, Editor
5 Rational constructions of modules for simple Lie algebras, George B. Seligman
6 Umbral calculus and Hopf algebras, Robert Morris, Editor
7 Complex contour integral representation of cardinal spline functions, Walter Schempp
8 Ordered fields and real algebraic geometry, D. W. Dubois and T. Recio, Editors

9 Papers in algebra, analysis and statistics, R. Lidl, Editor
10 Operator algebras and K-theory, Ronald G. Douglas and Claude Schochet. Editors
11 Plane ellipticity and related problems, Robert P. Gilbert, Editor
12 Symposium on algebraic topology in honor of José Adem, Samuel Gitler. Editor
13 Algebraists' homage: Papers in ring theory and related topics,
S. A. Amitsur, D. J. Saltman, and G. B. Seligman, Editors

14 Lectures on Nielsen fixed point theory, Boju Jiang

15 Advanced analytic number theory. Part I: Ramification theoretic methods, Carlos J. Moreno

16 Complex representations of GL(2,K) for finite fields K, Ilya Piatetski-Shapiro
17 Nonlinear partial differential equations, Joel A. Smoller, Editor
18 Fixed points and nonexpansive mappings, Robert C. Sine, Editor
19 Proceedings of the Northwestern homotopy theory conference, Haynes R. Miller and Stewart B. Priddy, Editors

20 Low dimensional topology, Samuel J. Lomonaco, Jr., Editor

21 Topological methods in nonlinear functional analysis, S. P. Singh, S. Thomeier, and B. Watson, Editors

22 Factorizations of $b^{n} \pm 1, b=$ 2,3,5,6,7,10,11,12 up to high powers, John Brillhart. D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff. Jr.

23 Chapter 9 of Ramanujan's second notebook-Infinite series identities, transformations, and evaluations. Bruce C. Berndt and Padmini T. Joshi

24 Central extensions, Galois groups, and ideal class groups of number fields, A. Fröhlich

25 Value distribution theory and its applications. Chung-Chun Yang. Editor

26 Conference in modern analysis and probability, Richard Beals. Anatole Beck, Alexandra Bellow, and Arshag Hajian. Editors

Titles in This Series

Volume

27 Microlocal analysis, M. Salah Baouendi, Richard Beals, and Linda Preiss Rothschild, Editors
28 Fluids and plasmas: geometry and dynamics, Jerrold E. Marsden, Editor
29 Automated theorem proving, W. W. Bledsoe and Donald Loveland. Editors
30 Mathematical applications of category theory, J. W. Gray, Editor
31 Axiomatic set theory, James E. Baumgartner, Donald A. Martin, and Saharon Shelah, Editors
32 Proceedings of the conference on Banach algebras and several complex variables, F. Greenleaf and D. Gulick, Editors

33 Contributions to group theory, Kenneth I. Appel, John G. Ratcliffe, and Paul E. Schupp. Editors
34 Combinatorics and algebra, Curtis Greene. Editor
35 Four-manifold theory, Cameron Gordon and Robion Kirby, Editors
36 Group actions on manifolds, Reinhard Schultz, Editor
37 Conference on algebraic topology in honor of Peter Hilton, Renzo Piccinini and Denis Sjerve, Editors
38 Topics in complex analysis, Dorothy Browne Shaffer, Editor

39 Errett Bishop: Reflections on him and his research, Murray Rosenblatt. Editor
40 Integral bases for affine Lie algebras and their universal enveloping algebras, David Mitzman
41 Particle systems, random media and large deviations, Richard Durrett, Editor

42 Classical real analysis, Daniel Waterman, Editor
43 Group actions on rings, Susan Montgomery, Editor

44 Combinatorial methods in topology and algebraic geometry, John R. Harper and Richard Mandelbaum, Editors
45 Finite groups-coming of age, John McKay, Editor
46 Structure of the standard modules for the affine Lie algebra $A_{1}^{(1)}$. James Lepowsky and Mirko Primc
47 Linear algebra and its role in systems theory, Richard A. Brualdi, David H. Carlson, Biswa Nath Datta. Charles R. Johnson, and Robert J. Plemmons, Editors

48 Analytic functions of one complex variable, Chung-chun Yang and Chi-tai Chuang, Editors
49 Complex differential geometry and nonlinear differential equations. Yum-Tong Siu, Editor
50 Random matrices and their applications, Joel E. Cohen, Harry Kesten, and Charles M. Newman. Editors

51 Nonlinear problems in geometry, Dennis M. DeTurck, Editor
52 Geometry of normed linear spaces, R. G. Bartle, N. T. Peck, A. L. Peressini, and J. J. Uhl, Editors

53 The Selberg trace formula and related topics, Dennis A. Hejhal, Peter Sarnak, and Audrey Anne Terras, Editors
54 Differential analysis and infinite dimensional spaces. Kondagunta Sundaresan and Srinivasa Swaminathan, Editors

Differential Analysis
 in Infinite Dimensional Spaces

Volume 54

Differential Analysis in Infinite Dimensional

Spaces

Proceedings of an AMS Special Session held August 8-10, 1983, with partial support from the NSERC [Canada]

Kondagunta Sundaresan and Srinivasa Swaminathan, Editors

american mathematical society
Prouldence - Rhode Island

EDITORIAL BOARD

Irwin Kra, managing editor
Gerald J. Janusz
Jan Mycielski
Johannes C. C. Nitsche
Carl M. Pearcy

Alan D. Weinstein

The Proceedings of the Special Session on Differential Analysis in Infinite Dimensional Spaces was held at the 87th Summer Meeting of the American Mathematical Society in Albany, New York, August 8-10, 1983. Work was partially supported by a research grant A-5615 from the NSERC (Canada).

1980 Mathematics Subject Classification. Primary 58B10, 58C25, 46E15, 41A65.

Library of Congress Cataloging-in-Publication Data

Differential analysis in infinite dimensional spaces.
(Contemporary mathematics, ISSN 0271-4132; v. 54)
"Proceedings of the Special Session on Differential Analysis in Infinite Dimensional Spaces... held at the 87th Summer Meeting of the American Mathematical Society in Albany, New York, August 8-10, 1983"-Verso of $t_{0} p_{0}$

Bibliography: p.

1. Complex manifolds-Congresses, 2. Differentiable mąnifolds-Congresses. I. Sundaresan, Kondagunta, 1931- . II. Swaminathan, Srinivasa. III. Special Session on Differential Analysis in Infinite Dimensional Spaces (1983: Albany, N. Y.) IV. American Mathematical Society. V. Series: Contemporary mathematics (American Mathematical Society); v. 54. QA613.D53 1986 514'. 74
$86-3510$
ISBN 0-8218-5059-8

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews provided the customary acknowledgement of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Executive Director. American Mathematical Society. P.O. Box 6248. Providence, Rhode Island 02940.

The appearance of the code on the first page of an article in this volume indicates the copyright owner's consent for copying beyond that permitted by Sections 107 or 108 of the U. S. Copyright Law, provided that the fee of $\$ 1.00$ plus $\$.25$ per page for each copy be paid directly to Copyright Clearance Center, Inc., 21 Congress Street, Salem, Massachusetts 01970. This consent does not extend to other kinds of copying. such as copying for general distribution, for advertising or promotion purposes, for creating new collective works or for resale.

[^0]
CONTENTS

Preface ix
The Impact of Gauge Theories on Nonlinear Infinite Dimensional Analysis MELVYN S. BERGER 1
Polar Subsets in Infinite Dimensional Spaces - Small Sets inLarge Spaces
SEAN DINEEN 9
Approximation of Differentiable Functions on a Hilbert Space, II M. P. HEBLE 17
Group Analysis of Some Partial Differential Equations Arising in Applications
C. C. A. SASTRI 35
Minimax Inequalities and Applications MAU-HSIANG SHIH and KOK-KEONG TAN 45
Slices for Actions of Infinite Dimensional Groups
T. N. SUBRAMANIAM 65
Convex Functions on Banach Lattices
K. SUNDARESAN 79
Differential Analysis and Geometry of Banach Spaces - IsomorphismTheoryK. SUNDARESAN and S. SWAMINATHAN95
A Survey of Rough Norms with Applications
J. H. M. WHITFIELD and V. ZIZLER 107

During the last two decades there has been a significant development of many topics in differential analysis in infinite dimensional spaces. New techniques, such as ultraproducts and ultrapowers, have thrown light on the relationship between the geometric properties of Banach spaces and the existence of differentiable functions on the spaces.

A special session on Differential Analysis on Infinite Dimensional Spaces was held at the Summer meeting of the American Mathematical Society at SUNY, Albany, N.Y., August 8-11, 1983. The session consisted of three meetings of three forty-minute talks each. This volume contains the articles submitted by most of the participants in the special session as well as articles by those who were invited but could not be present at the meeting.

We thank all the participants and the contributors for their cooperation. It is a pleasure to acknowledge our gratitude to the editorial committee of the Contemporary Mathematics Series for including these proceedings in the Series. Finally, we are thankful to the staff of the AMS for their efficient service, help during the Session and cooperation.
K.Sundaresan
S.Swaminathan

American Mathematical Society

P. O. Box 6248, Providence, Rhode Island 02940

Location: 201 Charles Street at Randall Square
Telephone (407) 272-9500

ERRATA

DIFFERENTIAL ANALYSIS IN INFINITE DIMENSIONAL SPACES Volume 54, Contemporary Mathematics

```
The enclosed material was inadvertently omitted from "Approximation of Differentiable Functions on a Hilbert Space" by M. P. Heble. Please insert it after equation (1), line 15 on page 23. We apologize for any inconvenience this error may have caused.
```

In general for any integer $j \in[0, k]$,

$$
\begin{gather*}
\left\|D^{j} \tilde{f}_{x}(y)-D^{j} f(y)\right\|_{j}=\|\left[D^{j} f(x)+D^{j+1} f(x) \cdot(y-x)+\cdots+\frac{D^{k} f(x)}{(k-j)!}(y-x)^{(k-j)}\right] \\
-\left[D^{j} f(x)+D^{j+1} f(x) \cdot(y-x)+\cdots+\int_{0}^{1} \frac{(1-t)^{k-j-1}}{(k-j-1)!} D^{k} f(x+t(y-x))\right. \tag{2}\\
\left.\cdot d t(y-x)^{(k)}\right] \|
\end{gather*}
$$

Now suppose $\eta>0$; then let $\delta>0$ such that $\sup _{y \in U}\left\|D^{k} f(x)-D^{k} f(y)\right\| \|_{k}<n$. Then for such y we find that

$$
\sup _{y \in U}\left\|D^{j} \tilde{f}_{x}(y)-D^{j} f(y)\right\|_{j}<\frac{\eta \cdot \delta^{k-j}}{(k-j)!}, \quad j=0,1, \ldots, k
$$

This completes the proof of the Corollary.
Next let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be a countable dense set in Ω, and write $\varepsilon_{n}=\varepsilon\left(x_{n}\right)$, for $n=1,2, \ldots$.

LEMMA 2. (a) ([11], p. 301, p. 308) For each $x \in \Omega$, ヨ open ball $B_{r}(x) \subset \Omega$ satisfying

$$
\sup _{y, y^{\prime} \in B_{r}(x)}\left|\varepsilon(y)-\varepsilon\left(y^{\prime}\right)\right|<\inf _{y \in B_{r}(x)} \frac{\varepsilon(y)}{2}
$$

(b) For each $n=1,2, \ldots$ and given constant $K_{n}>1$ open ball $B_{\rho_{n}}\left(x_{n}\right) \subset \Omega$ such that (a) holds in $B_{\rho_{n}}\left(x_{n}\right)$ as also the following: $\exists \tilde{f}_{n} \in C^{\infty}(\Omega, F)$ satisfying:

$$
\forall \text { integers } j \in[0, k], \sup _{x \in B_{\rho_{n}}\left(x_{n}\right)}\left\|D^{j} \tilde{f}_{n}^{\sim}(x)-D^{j} f(x)\right\| \|_{j}<\frac{\varepsilon_{n} n_{n}^{k-j}}{k_{n} \cdot 2^{n+3}} .
$$

PROOF OF LEMMA 2. (a) Let $x \in \Omega$; then $m=\varepsilon(x)>0$. The continuity of $\varepsilon(\cdot)$ implies that $\exists r>0 \ni| | w-x| |<r \Rightarrow|\varepsilon(w)-\varepsilon(x)|<K m \quad$ (where $0<K<1$ is a hypothetical constant to be suitably determined presently). Then for $w \in B_{r}(x), \varepsilon(w)>(1-K) m$, hence

CONM/54

[^0]: Copyright © 1986 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government.
 Printed in the United States of America.
 This volume was printed directly from author prepared copy.
 The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

