mathematics

Multiparameter Bifurcation Theory

Proceedings of a Summer Research Conference held July 14-20, 1985

COHTEMPORARY mathematics

Titles in This Series

Volume

1 Markov random fields and their applications, Ross Kindermann and J. Laurie Snell

2 Proceedings of the conference on integration, topology, and geometry in linear spaces. William H. Graves, Editor

3 The closed graph and P-closed graph properties in general topology, T. R. Hamlett and L. L. Herrington

4 Problems of elastic stability and vibrations, Vadim Komkov, Editor
5 Rational constructions of modules for simple Lie algebras. George B. Seligman
6 Umbral calculus and Hopf algebras, Robert Morris. Editor
7 Complex contour integral representation of cardinal spline functions, Walter Schempp
8 Ordered fields and real algebraic geometry, D. W. Dubois and T. Recio, Editors

9 Papers in algebra, analysis and statistics, R. Lidl, Editor
10 Operator algebras and K-theory, Ronald G. Douglas and Claude Schochet. Editors
11 Plane ellipticity and related problems, Robert P. Gilbert, Editor
12 Symposium on algebraic topology in honor of José Adem, Samuel Gitler. Editor
13 Algebraists' homage: Papers in ring theory and related topics,
S. A. Amitsur, D. J. Saltman, and G. B. Seligman, Editors

14 Lectures on Nielsen fixed point theory, Boju Jiang

15 Advanced analytic number theory. Part I: Ramification theoretic methods, Carlos J. Moreno

16 Complex representations of GL(2,K) for finite fields K. Ilya Piatetski-Shapiro

17 Nonlinear partial differential equations, Joel A. Smoller. Editor
18 Fixed points and nonexpansive mappings, Robert C. Sine, Editor

19 Proceedings of the Northwestern homotopy theory conference. Haynes R. Miller and Stewart B. Priddy. Editors

20 Low dimensional topology, Samuel J. Lomonaco, Jr., Editor

21 Topological methods in nonlinear functional analysis, S. P. Singh. S. Thomeier, and B. Watson. Editors

22 Factorizations of $b^{n} \pm 1, b=$ 2,3,5,6,7,10,11,12 up to high powers, John Brillhart, D. H. Lehmer. J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff. Jr.

23 Chapter 9 of Ramanujan's second notebook-Infinite series identities. transformations, and evaluations. Bruce C. Berndt and Padmini T. Joshi

24 Central extensions, Galois groups, and ideal class groups of number fields, A. Fröhlich

25 Value distribution theory and its applications. Chung-Chun Yang. Editor

26 Conference in modern analysis and probability, Richard Beals. Anatole Beck. Alexandra Bellow, and Arshag Hajian, Editors

Volume
27 Microlocal analysis, M. Salah Baouendi, Richard Beals, and Linda Preiss Rothschild, Editors
28 Fluids and plasmas: geometry and dynamics, Jerrold E. Marsden. Editor
29 Automated theorem proving. W. W. Bledsoe and Donald Loveland. Editors
30 Mathematical applications of category theory, J. W. Gray, Editor
31 Axiomatic set theory, James E. Baumgartner. Donald A. Martin, and Saharon Shelah, Editors
32 Proceedings of the conference on Banach algebras and several complex variables, F. Greenleaf and D. Gulick, Editors

33 Contributions to group theory, Kenneth I. Appel, John G. Ratcliffe, and Paul E. Schupp. Editors
34 Combinatorics and algebra, Curtis Greene, Editor
35 Four-manifold theory, Cameron Gordon and Robion Kirby. Editors
36 Group actions on manifolds, Reinhard Schultz, Editor
37 Conference on algebraic topology in honor of Peter Hilton, Renzo Piccinini and Denis Sjerve. Editors
38 Topics in complex analysis, Dorothy Browne Shaffer, Editor
39 Errett Bishop: Reflections on him and his research, Murray Rosenblatt. Editor
40 Integral bases for affine Lie algebras and their universal enveloping algebras, David Mitzman
41 Particle systems, random media and large deviations, Richard Durrett. Editor
42 Classical real analysis, Daniel Waterman. Editor
43 Group actions on rings, Susan Montgomery. Editor

44 Combinatorial methods in topology and algebraic geometry. John R. Harper and Richard Mandelbaum. Editors
45 Finite groups-coming of age, John McKay, Editor
46 Structure of the standard modules for the affine Lie algebra $A_{1}^{(1)}$, James Lepowsky and Mirko Primc
47 Linear algebra and its role in systems theory, Richard A. Brualdi, David H. Carlson, Biswa Nath Datta, Charles R. Johnson, and Robert J. Plemmons, Editors
48 Analytic functions of one complex variable, Chung-chun Yang and Chi-tai Chuang. Editors
49 Complex differential geometry and nonlinear differential equations, Yum-Tong Siu. Editor
50 Random matrices and their applications, Joel E. Cohen, Harry Kesten, and Charles M. Newman. Editors
51 Nonlinear problems in geometry, Dennis M. DeTurck. Editor
52 Geometry of normed linear spaces, R. G. Bartle, N. T. Peck. A. L. Peressini, and J. J. Uhl. Editors

53 The Selberg trace formula and related topics, Dennis A. Hejhal. Peter Sarnak, and Audrey Anne Terras. Editors
54 Differential analysis and infinite dimensional spaces, Kondagunta Sundaresan and Srinivasa Swaminathan, Editors
55 Applications of algebraic K-theory to algebraic geometry and number theory, Spencer J. Bloch. R. Keith Dennis. Eric M. Friedlander. and Michael R. Stein. Editors
56 Multiparameter bifurcation theory, Martin Golubitsky and John Guckenheimer. Editors

Multiparameter Bifurcation Theory

COMTEMPORARY mathematics

Volume 56

Multiparameter Bifurcation Theory

Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held July 14-20, 1985, with support from the National Science Foundation

Martin Golubitsky and John M. Guckenheimer, Editors

EDITORIAL BOARD

Irwin Kra, managing editor

Gerald J. Janusz

Jan Mycielski
Johannes C. C. Nitsche
Carl M. Pearcy

Alan D. Weinstein

The AMS-IMS-SIAM Joint Summer Research Conference in the Mathematical Sciences on Multiparameter Bifurcation Theory was held at Humboldt State University, Arcata, California on July 14-20, 1985 with support from the National Science Foundation, Grant DMS-8415201.

1980 Mathematics Subject Classification. Primary 58F14. 34C35. 76E30.

LIbrary of Congress Cataloging-In-Publication Data

Multiparameter bifurcation theory.
(Contemporary Mathematics; v. 56)
Bibliography: p.
I. Bifurcation theory-Congresses. I. Golubitsky, Martin. 1945- . II. Guckenheimer. John. III. American Mathematical Society. IV. Institute of Mathematical Statistics. V. Society for Industrial and Applied Mathematics. VI. Series: Contemporary mathematics (American Mathematical Society); v. 56.
QA372.M885 $1986 \quad 515.3^{\prime} 52 \quad 86-8106$

ISBN 0-8218-5060-1, ISSN 0271-4132

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Executive Director, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248.

The appearance of the code on the first page of an article in this book indicates the copyright owner's consent for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that the fee of $\$ 1.00$ plus $\$.25$ per page for each copy be paid directly to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, Massachusetts 01970. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

```
Copyright @ 1986 by the American Mathematical Society. All rights reserved.
    The American Mathematical Society retains all rights except those granted
                                    to the United States Government.
                    Printed in the United States of America.
        This volume was printed directly from author prepared copy.
    The paper used in this book is acid-free and falls within the guidelines
                established to ensure permanence and durability. @
                1098765432. 959493929190
```


TABLE OF CONTENTS

Preface ix
Invited Lectures xiii
Conference Participants xv
CONTRIBUTED PAPERS
F.H. Busse, Phase-turbulence in convection near threshold 1
S-N. Chow and D. Wang, Normal forms of bifurcating periodic orbits 9
P. Coullet, D. Repaux and J.M. Vanel, Quasiperiodic patterns. 19
R. Cushman and J.A. Sanders, Nilpotent normal forms and representation theory of $s \ell(2, R)$ 31
G. Dangelmayr and D. Armbruster, Steady-state mode interactions in the presence of $O(2)$-symmetry and in non-flux boundary value problems 53
M.J. Field, Equivariant dynamics 69
T. Gaffney, Some new results in the classification theory of bifurcation problems 97
S.A. van Gils and E. Horozov, Uniqueness of limit cycles in planar vector fields which leave the axes invariant 117
M. Golubitsky and I. Stewart, Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators 131
J. Guckenheimer, A codimension two bifurcation with circular symmetry 175
J. K. Hale, Local flows for functional differential equations 185
E. Knobloch, On the degenerate Hopf bifurcation with O(2) symmetry 193
E. Knobloch, A.E. Deane, J. Toomre and D.R. Moore, Doubly diffusive waves 203
R. Lauterbach, An example of symmetry breaking with submaximal isotropy subgroup 217
I. Moroz, A codimension-three bifurcation arising in Langmuir circulations 223
W. Nagata, Symmetric Hopf bifurcations and magnetoconvection. 237
M.R.E. Proctor, Columnar convection in double- diffusive systems 267

1. Rehberg and G. Ahlers, Codimension two bifurcation in a convection experiment 277
M. Roberts, J. Swift and D. Wagner, The Hopf bifurcation on a hexagonal lattice 283
D.H. Sattinger, Completely integrable Hamiltonian systems on semi-simple Lie algebras 319
L. Turyn, Bifurcation without mixed mode solutions 335
A. Vanderbauwhede, Hopf bifurcation at non-semisimple eigenvalues 343
ABSTRACTS
P. Chossat, Interaction of azimuthal modes in the Couette-Taylor problem 355
T. Erneux and E.L. Reiss, Slowly varying bifurcation parameters 357
B. F. Gray, Applications of singularity theory to explosion theory 359
P.C. Hohenberg, G. Ahlers and M. Lücke, Externally modulated convection: theory and experiment 361
W.F. Langford, Equivariant normal forms for the Taylor- Couette problem 363
S. Leibovich, S.K. Lele and I.M. Moroz, Development of spatial and temporal complexity in Langmuir circulation 367
D. Luss, Steady-state multiplicity features of chemically reacting systems 369
K.R. Meyer, Bibliographical notes on generic bifurcations in Hamiltonian systems 373
R. Tagg, Multicritical points in flow between independently rotating cylinders 383

PREFACE
This volume contains the proceedings of an American Mathematical Society Summer Research Conference held in Arcata, California during July, 1985. Bifurcation theory has been an area of intense interdisciplinary research and it is our hope that this volume will convey the excitement that we have found coexisting with this interaction. The meeting brought together scientists working on fluid instabilities and chemical reactor dynamics as well as mathematicians interested in multiparameter bifurcation. These two areas of applications represent ones in which experiment and mathematical analysis mutually enhance each other. The experimental and numerical results have suggested interesting and fruitful mathematical problems which in turn have made predictions to be tested by experiments. The subject is far from closed; work continues with the goal of making the mathematics, physics and chemistry fit together more completely.

Multiparameter bifurcation theory seeks to classify the transitions which may be expected to occur in dynamical systems as several parameters are varied. Such classifications are based on the mathematical notion of genericity; genericity, however, depends crucially on the particular context. Various papers in these proceedings study steady state bifurcation, Hopf bifurcation to periodic solutions, interactions between modes, dynamic bifurcations and the role of symmetries in such systems. The mathematics offers hope, at least, for a systematic classification of the possible bifurcations in these settings.

The theoretical and experimental studies of chemical reactors and fluids provide many situations where these mathematical ideas may be tested. Stirred tank chemical reactors may have several infeeds where different compounds are fed into the reactor at different rates and at different temperatures. The goal of theory is to predict the types of transitions in the (asymptotic) state of the reactor as these controls are changed. Even the analysis of the simplest mathematical model (the CSTR) has provided chemical engineers with research problems for generations.

Rutherford Aris has described the CSTR by quoting from Macbeth "Yet who would have thought the old man to have had so much blood in him". Recently, however, the new methods of bifurcation theory have aided significantly in the analysis of the CSTR.

In fluid dynamics, substantial effort has been expended on determining the routes to chaos in two laboratory systems: Taylor-Couette flow between rotating cylinders and RayleighBenard convection in a fluid layer. Most of this work is devoted to studying routes to chaotic behavior occurring with the systematic variation of one experimental parameter. Recently however, a number of experiments have been performed which carefully document the states of these systems when two parameters are varied. Several of the participants of this meeting have performed these experiments and are actively trying to compare their results with the mathematical predictions of codimension two bifurcation theory. These efforts are complicated both by the presence of symmetry and by imperfections that break those symmetries.

In the Couette-Taylor experiment especially, many of the observed states enjoy symmetries which vary from state to state. This rich structure has yielded a moderately long list of problems that currently challenge the theorists. The theoretical program consists of understanding mathematically the individual transitions and symmetries that are observed, computing appropriate normal forms, determining the values of coefficients in the normal form directly from the fluid equations, and finally elucidating the dynamics associated with these normal forms. The hope is that the structure of the bifurcations found in these model equations will correspond to those observed in experiments.

For Rayleigh-Benard convection a similarly rich structure of fluid states has been observed both in experiment and in the mathematical analysis. Here however, the boundary conditions used in theoretical studies seldom correspond fully to those of experiments. For example, in the experiments described in this volume, heat flow through sidewalls represents a significant departure from the symmetry of the system with idealized boundary conditions. Finally, the Rayleigh-Benard problem serves as a wonderful test problem for other diffusive and doubly diffusive phenomena.

The mathematical study of multiparameter bifurcation theory presents a variety of theoretical and practical difficulties, many of which are discussed in these proceedings. Bifurcation problems with the exception of the simplest problems lead to specific systems of differential equations of moderate size. When these problems come from systems with symmetry, even the task of enumerating the equilibrium solutions of the normal form equations is a substantial task to which the sophisticated tools of singularity theory and group theory can be applied productively. The study of nonequilibrium behavior in these problems is even more complicated. The delicacies of the nonlinear interactions involved in higher codimension bifurcations seem at times diabolically designed to frustrate attempts to determine unfoldings by means of numerical integration. There are techniques however, which do aid in such attempts and many of these are used in this volume.

All of the contributed papers appearing in these proceedings have been refereed. Our guidelines were that the contributed papers should contain either original research or be surveys that go beyond being just synopses of other papers. Abstracts from several of the lectures have been included to serve as guides and pointers to the literature.

It remains only to thank the many people whose efforts made both the conference and these proceedings possible. Edgar Knobloch and Dan Luss actively helped plan the conference program. The referees' efforts did help improve the papers appearing in this volume. Carole Kohanski simplified the mechanics of organizing, running and participating in the conference. Most importantly, we thank the participants and the contributors.

Martin Golubitsky John Guckenheimer Houston, Texas Ithaca, New York

February, 1986

F. H. Busse	Rotating fluids
Pascal Chossat	Interaction of rotating waves in the strongly counterrotating Couette-Taylor problem
Pierre Coullet	Quasiperiodic patterns
Gerhard Dange Imayr	Stationary bifurcations in non-flux boundary value problems
Thomas Erneux	Slowly varying bifurcation parameters: Hopf bifurcation; bursting oscillations
Martin Golubitsky	An introduction to singularity theory
Brian F, Gray	Explosion theory and singularity theory
Jack K. Hale	Flows on center manifolds for delay equations
Vladimir Hlavacek	Examples of bifurcations in the theory of reacting systems
Pierre Hohenberg	Modulated convection: Theory and experiment
Allan Jepson	The numerical computation of singular points
Edgar Knobloch	Doubly diffusive waves
William F. Langford	Multiparameter bifurcation and symmetry in Taylor-Couette flow
Dan Luss	Steady state multiplicity of chemically reacting systems
Irene Moroz	Development of spatial complexity in Langmuir circulations
Leonid Pismen	Selection of wave patterns through mode interaction: oscillatory Marangoni instability
M. R. E. Proctor	Convection at large and small aspect ratio
Ingo Rehberg	Experimental observation of a codimension two bifurcation in a binary fluid mixture
Mark Roberts	Degenerate Hopf bifurcation with $O(2)$ symmetry
Jan Sanders	Nilpotent normal forms and representation theory of $\mathrm{sl}(2, R)$
David H. Sattinger	Hamiltonian hierarchies on semisimple Lie algebras
Ian Stewart	Hopf bifurcation with symmetry
Randall Tagg	"Multicritical points" in flow between independently rotating cylinders

LIST OF PARTICIPANTS

Guenter Ahlers
Department of Physics UCSB
Santa Barbara, CA 93106
Peter W. Bates
Department of Mathematics Brigham Young University Provo, UT 84602

Paul A. Binding
Department of Mathematics and Statistics University of Calgary Calgary, Alberta CANADA T2N IN4
F. H. Busse

Theoretische Physik IV Universitat Bayreuth
Postfach 3008
858 Bayreuth, WEST GERMANY
Ernesto Buzano
Dipartimento di Matematica Universita di Torino Via Principe Amedeo 8 10123 Torino, ITALY

Gunduz Caginalp
Department of Mathematics University of Pittsburgh Pittsburgh, PA 15260

Pascal Chossat
I.M.S.P.

Universite de Nice
Parc Valrose
06034 Nice Cedex, FRANCE
Shui-Nee Chow
Department of Mathematics Michigan State University East Lansing, MI

Pierre Coullet
Department of Physics
Universite de Nice
Parc Valrose
06034 Nice Cedex, FRANCE

John David Crawford Department of Physics UCSD
La Jolla, CA 92093
Gerhard Dangelmayr
Institut fur Informationverarbeitung
Univerity of Tubingen
Kostlinstrasse 6
D-7400 Tubingen, WEST GERMANY
Thomas Erneux
Department of Engineering
Sciences and Applied Mathematics
Northwestern University
Evanston, IL 60201

William Farr
Department of Chemical Engineering
and Materials Science
University of Minnesota Minneapoli, MN 55455

Michael J. Field
Department of Mathematics
University of Wisconsin
Madison, WI 53706
Terence Gaffney
Department of Mathematics Northeastern University Boston, MA 02115

Stephan A. van Gils
Department of Mathematics
and Computer Science
Free University Amsterdam
De Bodelaan 1081
Amsterdam, 1007 MC
THE NETHERLANDS
Martin Golubitsky
Department of Mathematics
University of Houston
Houston, TX 77004
Michael Gorman
Department of Physics
University of Houston Houston, TX 77004

Brian F. Gray	Reiner Lauterbach
School of Chemistry	Institut fur Mathematik
Macquarie University	Universitat Augsburg
North Ride	D-8900 Augsburg
New South Wales 2113, AUSTRALIA	WEST GERMANY
Bernard D. Greenspan	Dan Luss
Department of Mathematics	Department of Chemical Engineering
Vanderbilt University	University of Houston
Nashville, TN 37235	Houston, TX 77004
John Guckenheimer	John H. Maddocks
Department of Mathematics	Department of Mathematics
Cornell University	University of Maryland
Ithaca, NY 14853	College Park, MD 20742
Jack K. Hale	Jerry F. Magnan
Division of Applied Mathematics	Department of Mathematics
Brown University	Florida State University
Providence, RI 02912	Tallahassee, FL 32306
Mervin Hanson	Kenneth R. Meyer
Department of Chemistry	Mathematical Sciences
Humboldt State University	University of Cincinnati
Arcata, CA 95521	Cincinnati, OH 45221
Vladimir Hlavacek	Irene M. Moroz
Department of Chemical Engineering	School of Mathematics and
SUNY at Buffalo	Physics
Buffalo, NY 14260	University of East Anglia Norwich, Norfolk
Pierre Hohenberg	ENGLAND NR4 7TJ
AT\&T Bell Laboratories	
Murray Hill, NJ 07974	K. Wayne Nagata Department of Mathematics
Allan Jepson	and Statistics
Department of Computer Science	University of Guelph
University of Toronto	Guelph, Ontario
Toronto, Ontario	CANADA N1G 2 W 1
CANADA M5S 1A7	
	Leonid Pismen
Edgar Knobloch	Department of Chemical Engineering
Department of Physics	Technion
U.C.Berkeley	Haifa, ISRAEL
Berkeley, CA 94720	
	M. R. E. Proctor
William F. Langford	Department of Applied Mathematics
Department of Mathematics	and Theoretical Physics
and Statistics	University of Cambridge
University of Guelph	Cambridge CB3 9EW
Guelph, Ontario	ENGLAND

Ingo Rehberg
Theoretische Physik IV
Universitat Bayreuth
Postfach 3008
858 Bayreuth, WEST GERMANY
Malcolm Roberts
School of Chemistry
Macquarie University
North Ryde, New South Wales 2113, AUSTRALIA
R. Mark Roberts

Mathematics Institute
University of Warwick
Coventry CV4 7AL
ENGLAND
Jan Sanders
Department of Mathematics and Computer Science
Free University
P. O. Box 7161

Amsterdam 1007MC, THE NETHERLANDS
David H. Sattinger
School of Mathematics
University of Minnesota Minneapolis, MN 55455

Stephen Schecter
Department of Mathematics
North Carolina State University Box 8205
Raleigh, NC 27695
Alan Selby
Department of Applied
Mathematics
University of Western Ontario London, CANADA N6A 589

Pat Sethna
Department of Aerospace
Engineering and Mechanics
University of Minnesota
Minneapolis, MN 55455
Steven Shaw
Department of Mechanical
Engineering
Michigan State University
East Lansing, MI 48824
lan Stewart
Mathematics Institute
University of Warwick
Coventry CV4 7AL
ENGLAND
James W. Swift
Department of Applied Mathematics and Theoretical Physics
King's College Research Centre
Cambridge University
Cambridge, ENGLAND CB2 1ST
Randall Tagg
Department of Physics
University of Texas at Austin
Austin, TX 78712
James W. Thomas
Department of Mathematics
Colorado State University
Ft. Collins, CO 80523
Hans Troger
Department of Mechanics
Technische Universitat Wien
Karlsplatz 13
A-1040 Vienna, AUSTRIA
Theodore Tsotsis
Department of Chemical Engineering
University of Southern Cal ifornia
University Park
Los Angeles, CA 90089
Lawrence Turyn
Department of Mathematics and Statistics
Wright State University
Dayton, Ohio 45435
Andre Vanderbauwhede
Department of Theoretical Mechanics
Rijksuniversiteit Gent
Krijgslaan 281
B-9000 Gent, BELGIUM
Stephen Wiggins
Applied Mathematics
Caltech
Pasadena, CA 91125

