Abelian Group Theory
About this Title
László Fuchs, Rüdiger Göbel and Phillip Schultz, Editors
Publication: Contemporary Mathematics
Publication Year
1989: Volume 87
ISBNs: 978-0-8218-5068-8 (print); 978-0-8218-7675-6 (online)
DOI: http://dx.doi.org/10.1090/conm/087
MathSciNet review: 995258
Table of Contents
Front/Back Matter
Articles
- R. Göbel – Helmut Ulm: his work and its impact on recent mathematics [MR 995259]
- K. Benabdallah, D. Cutler and A. Mader – Extensions of torsion-complete $p$-groups [MR 995260]
- Kin-ya Honda – Plain global bases of reduced abelian $p$-groups [MR 995261]
- Patrick Keef – On set theory and the balanced-projective dimension of $C_\Omega $ groups [MR 995262]
- D. Cutler, A. Mader and Ch. Megibben – Essentially indecomposable abelian $p$-groups having a filtration of prescribed type [MR 995263]
- Wolfgang Liebert – Isomorphic automorphism groups of primary abelian groups. II [MR 995264]
- Warren May – Endomorphism rings of mixed abelian groups [MR 995265]
- Phillip Schultz – The endomorphism ring of a valuated group [MR 995266]
- D. Arnold and C. Vinsonhaler – Quasi-endomorphism rings for a class of Butler groups [MR 995267]
- David M. Arnold – Representations of partially ordered sets and abelian groups [MR 995268]
- Rüdiger Göbel and Claudia Sengelhoff – Vector spaces with four distinguished subspaces and applications to modules [MR 995269]
- Ulrich Albrecht – Abelian groups $A$ such that the category of $A$-solvable groups is preabelian [MR 995270]
- Otto Mutzbauer – Type invariants of torsion-free abelian groups [MR 995271]
- U. Albrecht and P. Hill – Separable vector groups [MR 995272]
- Claudia Metelli – Bihomogeneous groups [MR 995273]
- H. Pat Goeters and J. D. Reid – On the $p$-rank of ${\rm Hom}(A,B)$ [MR 995274]
- Manfred Dugas and Jutta Hausen – Torsion-free $E$-uniserial groups of infinite rank [MR 995275]
- M. Dugas and S. Shelah – $E$-transitive groups in $L$ [MR 995276]
- Paul Hill and Charles Megibben – The local equivalence theorem [MR 995277]
- R. S. Pierce – $E$-modules [MR 995278]
- L. Fuchs – Some applications of abelian group theory to modules [MR 995279]
- L. Salce and P. Zanardo – Finitely generated modules over valuation domains [MR 995280]
- Temple H. Fay – Torsion divisible dimension [MR 995281]
- A. D. Sands – Some remarks on $A$-radicals [MR 995282]
- Katsuya Eda – Cardinality restrictions on preradicals [MR 995283]
- Saad H. Mohamed and Bruno J. Müller – Continuous modules have the exchange property [MR 995284]