CONTEMPORARY MATHEMATICS

98

Every Planar Map is Four Colorable

Kenneth Appel and Wolfgang Haken

American Mathematical Society

Titles in This Series

Volume

1 Markov random fields and their applications, Ross Kindermann and J. Laurie Snell

2 Proceedings of the conference on integration, topology, and geometry in linear spaces, William H . Graves, Editor

3 The closed graph and P-closed graph properties in general topology, T. R. Hamlett and L. L. Herrington

4 Problems of elastic stability and vibrations, Vadim Komkov, Editor
5 Rational constructions of modules for simple Lie algebras, George B. Seligman
6 Umbral calculus and Hopf algebras, Robert Morris, Editor

7 Complex contour integral representation of cardinal spline functions, Walter Schempp
8 Ordered fields and real algebraic geometry, D. W. Dubois and T. Recio, Editors

9 Papers in algebra, analysis and statistics, R. Lidl, Editor

10 Operator algebras and K-theory, Ronald G. Douglas and Claude Schochet, Editors
11 Plane ellipticity and related problems, Robert P. Gilbert, Editor

12 Symposium on algebraic topology in honor of José Adem, Samuel Gitler, Editor

13 Algebraists' homage: Papers in ring theory and related topics, S. A. Amitsur, D. J. Saltman, and G. B. Seligman, Editors

14 Lectures on Nielsen fixed point theory, Boju Jiang
15 Advanced analytic number theory. Part I: Ramification theoretic methods, Carlos J. Moreno
16 Complex representations of $\mathrm{GL}(2, \mathrm{~K})$ for finite fields K, llya Piatetski-Shapiro
17 Nonlinear partial differential equations, Joel A. Smoller, Editor
18 Fixed points and nonexpansive mappings, Robert C. Sine, Editor

19 Proceedings of the Northwestern homotopy theory conference, Haynes R. Miller and Stewart B. Priddy, Editors

20 Low dimensional topology, Samuel J. Lomonaco, Jr., Editor

21 Topological methods in nonlinear functional analysis, S. P. Singh, S. Thomeier, and B. Watson, Editors

22 Factorizations of $b^{n} \pm 1, b=2$, $3,5,6,7,10,11,12$ up to high powers, John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr.

23 Chapter 9 of Ramanujan's second notebook-Infinite series identities, transformations, and evaluations, Bruce C. Berndt and Padmini T. Joshi

24 Central extensions, Galois groups, and ideal class groups of number fields, A. Fröhlich

25 Value distribution theory and its applications, Chung-Chun Yang, Editor

26 Conference in modern analysis and probability, Richard Beals, Anatole Beck, Alexandra Bellow, and Arshag Hajian, Editors
27 Microlocal analysis, M. Salah Baouendi, Richard Beals, and Linda Preiss Rothschild, Editors

28 Fluids and plasmas: geometry and dynamics, Jerrold E. Marsden, Editor

29 Automated theorem proving, W. W. Bledsoe and Donald Loveland, Editors
30 Mathematical applications of category theory, J. W. Gray, Editor
31 Axiomatic set theory, James E. Baumgartner, Donald A. Martin, and Saharon Shelah, Editors
32 Proceedings of the conference on Banach algebras and several complex variables, F. Greenleaf and D. Gulick, Editors

33 Contributions to group theory, Kenneth I. Appel, John G. Ratcliffe, and Paul E. Schupp, Editors
34 Combinatorics and algebra, Curtis Greene, Editor

Titles in This Series

Volume

35 Four-manifold theory, Cameron Gordon and Robion Kirby, Editors
36 Group actions on manifolds, Reinhiard Schultz, Editor

37 Conference on algebraic topology in honor of Peter Hilton, Renzo Piccinini and Denis Sjerve, Editors
38 Topics in complex analysis, Dorothy Browne Shaffer, Editor

39 Errett Bishop: Reflections on him and his research, Murray Rosenblatt, Editor
40 Integral bases for affine Lie algebras and their universal enveloping algebras, David Mitzman

41 Particle systems, random media and large deviations, Richard Durrett, Editor
42 Classical real analysis, Daniel Waterman, Editor
43 Group actions on rings, Susan Montgomery, Editor
44 Combinatorial methods in topology and algebraic geometry, John R. Harper and Richard Mandelbaum, Editors
45 Finite groups-coming of age, John McKay, Editor
46 Structure of the standard modules for the affine Lie algebra $A_{1}^{(1)}$, James Lepowsky and Mirko Primc
47 Linear algebra and its role in systems theory, Richard A. Brualdi, David H. Carlson, Biswa Nath Datta, Charles R. Johnson, and Robert J. Plemmons, Editors
48 Analytic functions of one complex variable, Chung-chun Yang and Chi-tai Chuang, Editors
49 Complex differential geometry and nonlinear differential equations, Yum-Tong Siu, Editor
50 Random matrices and their applications, Joel E. Cohen, Harry Kesten, and Charles M. Newman, Editors
51 Nonlinear problems in geometry, Dennis M. DeTurck, Editor

52 Geometry of normed linear spaces, R. G. Bartle, N. T. Peck, A. L. Peressini, and J. J. Uhl, Editors

53 The Selberg trace formula and related topics, Dennis A. Hejhal, Peter Sarnak, and Audrey Anne Terras, Editors
54 Differential analysis and infinite dimensional spaces, Kondagunta Sundaresan and Srinivasa Swaminathan, Editors

55 Applications of algebraic K-theory to algebraic geometry and number theory, Spencer J. Bloch, R. Keith Dennis, Eric M. Friedlander, and Michael R. Stein, Editors
56 Multiparameter bifurcation theory, Martin Golubitsky and John Guckenheimer, Editors

57 Combinatorics and ordered sets, Ivan Rival, Editor
58.I The Lefschetz centennial conference. Part I: Proceedings on algebraic geometry, D. Sundararaman, Editor
58.II The Lefschetz centennial conference. Part II: Proceedings on algebraic topology, S. Gitler, Editor
58.III The Lefschetz centennial conference. Part III: Proceedings on differential equations, A. Verjovsky, Editor
59 Function estimates, J. S. Marron, Editor
60 Nonstrictly hyperbolic conservation laws, Barbara Lee Keyfitz and Herbert C. Kranzer, Editors
61 Residues and traces of differential forms via Hochschild homology, Joseph Lipman
62 Operator algebras and mathematical physics, Palle E. T. Jorgensen and Paul S. Muhly, Editors
63 Integral geometry, Robert L. Bryant, Victor Guillemin, Sigurdur Helgason, and R. O. Wells, Jr., Editors

64 The legacy of Sonya Kovalevskaya, Linda Keen, Editor
65 Logic and combinatorics, Stephen G. Simpson, Editor

66 Free group rings, Narian Gupta
67 Current trends in arithmetical algebraic geometry, Kenneth A. Ribet, Editor
68 Differential geometry: The interface between pure and applied mathematics,

Titles in This Series

Volume

Mladen Luksic, Clyde Martin, and William Shadwick, Editors
69 Methods and applications of mathematical logic, Walter A. Carnielli and Luiz Paulo de Alcantara, Editors
70 Index theory of elliptic operators, foliations, and operator algebras, Jerome Kaminker, Kenneth C. Millett, and Claude Schochet, Editors
71 Mathematics and general relativity, James A. Isenberg, Editor
72 Fixed point theory and its applications, R. F. Brown, Editor

73 Geometry of random motion, Rick Durrett and Mark A. Pinsky, Editors
74 Geometry of group representations, William M. Goldman and Andy R. Magid, Editors
75 The finite calculus associated with Bessel functions, Frank M. Cholewinski
76 The structure of finite algebras, David C. Hobby and Ralph Mckenzie
77 Number theory and its applications in China, Wang Yuan, Yang Chung-chun, and Pan Chengbiao, Editors
78 Braids, Joan S. Birman and Anatoly Libgober, Editors
79 Regular differential forms, Ernst Kunz and Rolf Waldi
80 Statistical inference from stochastic processes, N. U. Prabhu, Editor
81 Hamiltonian dynamical systems, Kenneth R. Meyer and Donald G. Saari, Editors
82 Classical groups and related topics, Alexander J. Hahn, Donald G. James, and Zhe-xian Wan, Editors
83 Algebraic K-theory and algebraic number theory, Michael R. Stein and R. Keith Dennis, Editors

84 Partition problems in topology, Stevo Todorcevic
85 Banach space theory, Bor-Luh Lin, Editor
86 Representation theory and number theory in connection with the local Langlands conjecture, J. Ritter, Editor
87 Abelian group theory, Laszlo Fuchs, Rüdiger Göbel, and Phillip Schultz, Editors
88 Invariant theory, R. Fossum, W. Haboush, M. Hochster, and V. Lakshmibai, Editors

89 Graphs and algorithms, R. Bruce Richter, Editor
90 Singularities, Richard Randell, Editor
91 Commutative harmonic analysis, David Colella, Editor
92 Categories in computer science and logic, John W. Gray and Andre Scedrov, Editors
93 Representation theory, group rings, and coding theory, M. Isaacs, A. Lichtman, D. Passman, S. Sehgal, N. J. A. Sloane, and H. Zassenhaus, Editors
94 Measure and measurable dynamics, R. Daniel Mauldin, R. M. Shortt, and Cesar E. Silva, Editors
95 Infinite algebraic extensions of finite fields, Joel V. Brawley and George E. Schnibben

96 Algebraic topology, Mark Mahowald and Stewart Priddy, Editors
97 Dynamics and control of multibody systems, J. E. Marsden, P. S. Krishnaprasad, and J. C. Simo, Editors
98 Every planar map is four colorable, Kenneth Appel and Wolfgang Haken

Every Planar Map is Four Colorable

Contemporary Mathematics

Every Planar Map is Four Colorable

Kenneth Appel and
Wolfgang Haken

Providence, Rhode Island

EDITORIAL BOARD

Daniel M. Burns, Jr., managing editor
Richard W. Beals Gerald J. Janusz
Sylvain E. Cappell Jan Mycielski
David Eisenbud
Jonathan Goodman
Michael E. Taylor

1980 Mathematics Subject Classification (1985 Revision). Primary 05C15.

Library of Congress Cataloging-in-Publication Data

Appel, Kenneth I., 1932-
Every planar map is four colorable/by K. Appel, W. Haken.
p. cm.-(Contemporary mathematics, ISSN 0271-4132; v. 98)

Bibliography: p.
ISBN 0-8218-5103-9 (alk. paper)

1. Four-color problem. I. Haken, W. (Wolfgang) II. Title. III. Title: Every planar map is 4 colorable. IV. Series: Contemporary mathematics (American Mathematical Society); v. 98. QA612.18.A67 1989

89-15011
511'.5-dc20

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Manager of Editorial Services, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248.

The owner consents to copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that a fee of $\$ 1.00$ plus $\$.25$ per page for each copy be paid directly to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, Massachusetts 01970. When paying this fee please use the code 0271-4132/92 to refer to this publication. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

Copyright (C) 1989 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.
This volume was printed directly from author-prepared copy.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. (a)
Portions of this publication were typeset using $A_{M} S-T_{E} X$, the American Mathematical Society's $T_{E} X$ macro system.

Authors' Note

In this volume we present an emended version of our proof of the FourColor Theorem in a form as self-contained as we can make it. In addition, we have included a proof that four coloring of planar maps can be done in polynomial time. It had been suggested to us in 1976 that this result was an obvious consequence of the procedure of replacing reducible configurations by subgraphs with fewer vertices. A careful examination of the argument for situations in which reducible configurations are immersed rather than embedded in our triangulations showed a need for a rather more sophisticated argument. Since Section 3 of Part II was somewhat sketchy for careful readers, an appendix to Part II is provided to present "immersion reducibility" in detail and to prove the polynomial time result.

We begin with an introduction that is largely intended for the nonspecialist. The remainder of the volume consists, in addition to the appendix to Part II, of emended copies of the two papers "Every planar map is four colorable Part I: Discharging and Part II: Reducibility" originally published in the Illinois Journal of Mathematics as well as the detailed supplements to these papers which were circulated with the Illinois Journal in microfiche form.

Although the papers themselves have a few pages of introductory material, the introduction to the volume is itself intended to be self-contained, and includes some information mentioned in the papers.

The introduction consists of five sections. Section 1 is an introduction to the history of the Four-Color Problem and an outline of the techniques used in the proof. It consists of material that appeared in [5]. (References here are to the bibliography of the introduction.) A reader familiar with the problem may wish to skip Section 1. Section 2 is an introduction to D - and C-reducibility. It expands upon the brief discussion of reducibility in Section 1. A formal presentation of D - and C -reducibility is given in Sections $\mathrm{a}, \ldots, \mathrm{k}$ of the appendix to Part II. Section 3 provides more detail on unavoidable sets and our discharging procedure. It includes a detailed discussion of the "error correction routine" which is typical for this type of proof. This material appeared in [6]. Section 4 describes the organization of the proof in the two papers [3] and [4], a supplement, and a supplement to the supplement. It also describes some of the work done by other investigators in checking the proof or providing parallel verification. Section 5 describes our own checking procedures, which used both careful hand checks and computer verifications of work originally done by hand. This introduction has a comparatively short bibliography. Since [3] (as corrected) is part of
this book, many of the references in the introduction are made to the bibliography of [3]. A reference to article number n in the bibliography of [3] is given as [3,n]. The remainder of the book consists of the two papers [3] and [4], the appendix to [4], and the supplements.

Each page of this book that is reprinted from an earlier publication has two numbers - a page number for this book and the original page number. The new material, including the introduction, has single page numbers. References in the contents are to the original page number only. The number is prefaced by " D " for [3] the discharging paper, " R " for [4] the reducibility paper, " S " for the supplement, and " C " for the checklists (the supplement to the supplement).
It is important to understand how the supplement and checklists are related to the exposition of the proof in [3]. In the sense of mathematical papers, [3] is self-contained, since trivial details are usually left to the reader rather than clogging the exposition. Here, however, this approach leads to some difficulty. For example, on page D-462, the first line of the proof of the $q_{\mathrm{Ts}}\left(V_{\mathrm{s}}\right)$-Lemma states "This is proved by straightforward enumeration of all possible cases of $q_{\mathrm{Ts}}\left(V_{5}\right)>0$." The reader can then discover that the case analysis for this enumeration takes 29 pages in the supplement, and that the details to verify these cases require 107 pages of the corresponding checklists. We felt that these should be supplied as a courtesy to the reader although admittedly it is somewhat unusual to provide such detail. The tables of contents for the supplement and checklists are displayed in matching columns so that the material in the checklists corresponding to the analysis in the supplement appears on the same line. While it is possible to find many of the lemmas in the table of contents of the supplement, not all of them are there. Thus, to aid the careful checker, a separate table of lemmas gives the page on which each lemma is stated and where its proof starts.

CONTENTS

Acknowledgments XV
Introduction

1. History 1
2. C- and D-Reducibility 9
3. Unavoidable Sets and our Discharging Procedure 14
4. Details of the Proof 25
5. Our Checking Procedure 27
Bibliography 30
Part I: Discharging
6. Introduction D-429 31
7. The Discharging Procedure D-435 37
8. The Set U of Reducible Configurations $D-459$ 61
9. Probabilistic Considerations $D-478$ 80
10. Possible Improvements D-486 88
Bibliography D-489 91
Part II: Reducibility
11. Introduction R-491 93
12. The Computer Programs $R-492$ 94
13. Immersion Reducibility R-493 95
14. The Unavoidable Set U of Reducible Configurations $R-503$ 106
Appendix to Part II
(a) Planar graphs and maps 171
(b) Planar graphs and triangulations 176
(c) Planar graphs with contractions 178
(d) Kempe components and interchanges on a colored graph 180
(e) Representative colorations on a labeled n-ring R_{n} 181
(f) Fillings/contractions of R_{n} 183
(g) Kempe components on a maximal filling/contraction of R_{n} 188
(h) Kempe interchangeable sets on a maximal filling/contraction 190
(i) Abstract Kempe chain dispositions on R_{n} 192
(j) Open subsets of Φ_{n} 200
(k) The Kempe related extension of a subset of Φ_{n}; reducibility 202
(l) The outside filling/contraction of an immersion image 204
(m) C-reducing a triangulation 206
(n) The open subsets of Φ_{4} and Φ_{5}; the critical open subsets of Φ_{6} 209
(o) A. Bernhart's Bend Condition for R_{6}-reducibility 216
(p) The semi-critical open subsets of Φ_{6} that satisfy the Bend Condition 219
(q) $\mathrm{R}_{3^{-}}, \mathrm{R}_{4^{-}}, \mathrm{R}_{5^{-}}$, and R_{6}-reducing a triangulation 222
(r) Extended immersion images and simple extensions 225
(s) Configuration sets closed under simple extensions 230
(t) Sufficient conditions for non-critical configurations 234
(u) Conditions for non-critical reducers 247
(v) The Z-reducible closure \mathcal{U}^{*} of the unavoidable set U 255
(w) Locating reducible configurations or rings in triangulations 260
(x) The main algorithm 264
(y) An upper bound for the time demand, polynomial in N 270
(z) Possible improvements 272

SUPPLEMENT TO

 PART I
proofs S-3 280
Lemma (I) S-6 283
Table $9 S$-7 284
Proof of Lemma (I), continued S-12 289
Proof of Lemma $\left(\mathbf{S}^{+}\right)$S-14 291
Proof of the $q_{\mathrm{TS}}\left(V_{s}\right)$-Lemma
Introduction S -15
292
Cases $\mu=0,1 \quad S-18 \quad 295$
Case $\mu=2$ S-19 296
Case $\mu=3 \quad S-20 \quad 297$
Case $\mu=4 \quad$ S-31 308
Case $\mu=5 \quad S$-38 315
Proof of the L-Lemma S-44 321
Tables of 3-, . . . , 7-digit
arrangements S-45 322
Proof of the $q_{\mathrm{TL}}\left(V_{7}\right)$-Lemma
$\lambda=0$
Case $\lambda=1$ S-57 334
Lemmas on L- and T-dischargings stated S-66 343
Table $\mathscr{L}^{2} S$-68 345
Proofs S-72 349
Proof of $q_{\mathrm{TL}}\left(V_{k}\right)$-Lemma, $k=8, \ldots, 11 \quad S-79$356

CORRESPONDING CLASS CHECK LISTS

$$
\mathrm{I} 1-1, \ldots, \mathrm{I} 5-35 \quad C-1 \quad 532
$$

C-23 554
(1a), ..., (11) $\quad C-32$ 563
(3a) $\ldots . .(3 \mathrm{cb}) C-88$619
(4a),, (4g) C-125 656
CTS\#04,..., CTS\#33 C-133 664
(5a), ..., (5s) C-139 670
(6a), ..., (7h) C-146 677
Proof of $q_{\mathrm{TL}}\left(V_{8}\right)$-Lemma

Case $\bar{W} \geq 6 \quad S-79 \quad 356$
Case $\bar{W}=5 \quad S-83 \quad 360$
Case $\bar{W}=4 \quad S-93 \quad 370$
Case $\bar{W}=3 \quad S-105 \quad 382$
Case $\bar{W}=0 \quad S-115$392

Proof of the $q_{\mathrm{TL}}\left(V_{9}\right)$-Lemma
Case $\bar{W} \geq 6 \quad S-121 \quad 398$
Case $\bar{W}=5 \quad S-127 \quad 404$
Case $\bar{W}=4 \quad$ S-142 419
Case $\bar{W}=3 \quad$ S-160 437
Case $\bar{W}=0 \quad S$-167 444
Proof of the $q_{\mathrm{TL}}\left(V_{10}\right)$-Lemma S-170447
Case 5,L,T2 S-172 449
Case 5,L, ., L,5 S-173 450
Case $\nu \geq 8 \quad S$-174 451
Case $\nu=7 \quad S-175$ 452
Case $\nu=6$ or 5 S-177 454
Proof of the $q_{\text {TL }}\left(\mathrm{V}_{11}\right)$-Lemma S-195 472
Proof of the S-Lemma S-197 474444
(8a), ..., (8c) C-152 683
(8d),...,(8x) C-153 684
(9a),..., (10v) C-165 696
(11a),...,(11h) C-177 708
(12a), ...,(12g) C-179 710
(13a),...,(13n) C-180 711
(14a),...,(15c) C-185 716
(16a),..., (16g) C-193 724724CTL\#1,..., CTL\#152 C-194725
Supplement to Part II
(α) The immersion reducibility of the configurations of $U S$-198 475
(β) The reducers S-202 479
(γ) The n-decreased extensions S-218 495
(δ) n - and m-values and major vertices of the configurations of $U S$-250 528
(ϵ) List of configurations in $U-U^{\prime} \quad S-251$ 529

Lemmas

	STATEMENT	Page	PROOF	Page	
Lemma (5-6-6)	D-460	62	D-460	62	
Lemma (55-7-6-6)	D-461	63	S-3	280	
Lemma (5,L)	D-468	70	S-72	349	
Lemma (5,L,5)	D-468	70	S-72	349	
Lemma (5,L, • , L, 5)	D-468	70	S-74	351	
Lemma (5,L, - ,60 or 50)	D-468	70	S-77	354	
Lemma ($5, \mathrm{~L}, \cdot, 60$ or 50$)^{+}$	S-67	344	S-77	354	
Lemma (5,L,T1)	S-66	343	S-73	350	
Lemma (5,L,T2)	D-468	70	S-73	350	
Lemma (6-6)	D-462	64	S-3	280	
Lemma (6-6-6)	D-461	63	S-3	280	
Lemma (60 or 50,, 60 or 50)	D-468	70	S-72	349	
Lemma (60 or 50,T)	D-467	69	S-72	349	
Lemma (60 or 50,T2,T2)	D-467	69	S-72	349	
Lemma (60 or 50, •,60 or 50)	D-468	70	S-74	351	
Lemma (I)	S-6	283	S-6	283	
Lemma (L,5,L)	S-67	344	S-78	355	
Lemma (L2)	S-66	343	S-75	352	
Lemma (L,L)	S-67	344	S-78	355	
Lemma (S^{+})	D-462	64	S-14	291	
Lemma (T)	D-466	68	S-4	281	
Lemma (T,T2, T2, T)	D-467	69	S-6	283	
Lemma (T2,L,T2)	S-66	343	S-73	350	
Lemma (T2,T)	S-2	279	S-4	281	
Lemma (T2, T, T2)	S-2	279	S-5	282	
Lemma (T2, T2)	D-466	68	S-4	281	
Lemma (T2,T2,T)	S-2	279	S-5	282	
Lemma (T2,T2,T2)	D-467	69	S-5	282	
Lemma ($\mathrm{T} \\| \mathrm{T}$)	S-13	290	S-13	290	
$q_{\text {Ts }}\left(V_{5}\right)$ Lemma	D-462	64	S-15	292	
L-Lemma	D-466	68	S-44	321	
Upper Bound Lemma for $d\left(V_{k}\right)$	D-469	71	D-469	71	
Corollary	D-470	72	D-470	72	
Corollary 2	S-170	447	S-170	447	
$q_{\text {TL }}\left(V_{k}\right)$-Lemma	D-471	73	S-47	324	
S-Lemma	D-471	73	S-197	474	

ACKNOWLEDGMENTS

We thank the Illinois Journal of Mathematics for permission to reproduce (with emendations) the papers "Every planar map is four colorable, Part I: Discharging" by Kenneth Appel and Wolfgang Haken, and "Every planar map is four colorable, Part II: Reducibility" by Kenneth Appel, Wolfgang Haken, and John Koch. These papers, along with the material that appeared as microfiche supplements, were originally published in Volume 21 (1977) of the Illinois Journal of Mathematics. We thank Lynn Arthur Steen, the editor of Mathematics Today [5], for permission to reproduce some of the material in our chapter entitled "The four color problem" in that book. We also thank the Mathematical Intelligencer for permission to reproduce a large part of our article "The four color proof suffices" published in Volume 8 (1986) of that journal.

We want to thank Michael Rolle, Charles Mills, and William Mills for pointing out copying errors in preprints of [4]. We again thank Frank Allaire for his help (as explained in Footnote 2 to [4]). We greatly appreciate the careful checking by Ulrich Schmidt that resulted in [8] and his suggestions for clarification of our exposition. The completeness of this work was further enhanced by the work of H. Enomoto and S. Saeki, which led to [7]. We also benefitted from the suggestions of M. Aigner. Questions raised by Dan Younger in 1987 helped us to provide an appropriate level of detail in the sections on immersion reducibility in the appendix to Part II.

William Jockush and Kurt Cagle carefully executed our computer graphic programs to prepare the data base for the programs we used to check the supplements. Their suggestions greatly improved our checking procedures. John Davis read the appendix with care and made valuable suggestions. Zhu Xin Hu made corrections in the introduction and the appendix.

Last, we want to re-express our appreciation to our children Andrew, Laurel and Peter Appel, and Armin Haken and Dorothea Haken Blostein (then high school students and undergraduates) for aiding in checking the diagrams in the preprints for the papers. In addition, we greatly appreciate the careful job that Dorothea did in the summer of 1977 checking the four hundred pages of microfiche supplements.
K.I.A. W.H.

