Deformation Theory and Quantum Groups with Applications to Mathematical Physics
Deformation Theory and Quantum Groups with Applications to Mathematical Physics
Recent Titles in This Series

134 Murray Gerstenhaber and Jim Stasheff, Editors, Deformation theory and quantum groups with applications to mathematical physics, 1992

133 Alan Adolphson, Steven Sperber, and Marvin Tretkoff, Editors, p-Adic methods in number theory and algebraic geometry, 1992

132 Mark Gotay, Jerrold Marsden, and Vincent Moncrief, Mathematical aspects of classical field theory, 1992

131 L. A. Bokut', Yu. I. Ershov, and A. I. Kostrikin, Editors, Proceedings of the International Conference on Algebra Dedicated to the Memory of A. I. Mal'cev, Part 1, 2, and 3, 1992

130 L. Fuchs, K. R. Goodearl, J. T. Stafford, and C. Vinsonhaler, Editors, Abelian groups and noncommutative rings, 1992

129 John R. Graef and Jack K. Hale, Oscillation and dynamics in delay equations, 1992

128 Ridgley Lange and Shengwang Wang, New approaches in spectral decomposition, 1992

127 Vladimir Oliker and Andrejs Treibergs, Editors, Geometry and nonlinear partial differential equations, 1992

126 R. Keith Dennis, Claudio Pedrini, and Michael R. Stein, Editors, Algebraic K-theory, commutative algebra, and algebraic geometry, 1992

125 F. Thomas Bruss, Thomas S. Ferguson, and Stephen M. Samuels, Editors, Strategies for sequential search and selection in real time, 1992

124 Darrell Haile and James Osterburg, Editors, Azumaya algebras, actions, and modules, 1992

123 Steven L. Kleiman and Anders Thorup, Editors, Enumerative algebraic geometry, 1991

121 Alex J. Feingold, Igor B. Frenkel, and John F. X. Ries, Spinor construction of vertex operator algebras, triality, and $E_8^{(1)}$, 1991

120 Robert S. Doran, Editor, Selfadjoint and nonselfadjoint operator algebras and operator theory, 1991

119 Robert A. Melter, Azriel Rosenfeld, and Prabir Bhattacharya, Editors, Vision geometry, 1991

117 Morton Brown, Editor, Continuum theory and dynamical systems, 1991

114 Jeffrey C. Lagarias and Michael J. Todd, Editors, Mathematical developments arising from linear programming, 1990

113 Eric Grinberg and Eric Todd Quinto, Editors, Integral geometry and tomography, 1990

112 Philip J. Brown and Wayne A. Fuller, Editors, Statistical analysis of measurement error models and applications, 1990

111 Earl S. Kramer and Spyros S. Magliveras, Editors, Finite geometries and combinatorial designs, 1990

108 Melvyn S. Berger, Editor, Mathematics of nonlinear science, 1990

107 Mario Milman and Tomas Schonbek, Editors, Harmonic analysis and partial differential equations, 1990

106 Wilfried Sieg, Editor, Logic and computation, 1990

(Continued in the back of this publication)
The AMS-IMS-SIAM 1990 Joint Summer Research Conference on Deformation Theory of Algebras and Quantization with Applications to Physics was held June 14–20, 1990 at the University of Massachusetts, Amherst, Massachusetts, with support from the National Science Foundation, Grant No. DMS-8918200.

1991 Mathematics Subject Classification. Primary 17B37, 16W30, 81R05, 18D10.

Library of Congress Cataloging-in-Publication Data
AMS-IMS-SIAM Joint Summer Research Conference on Deformation Theory of Algebras and Quantization with Applications to Physics (1990: University of Massachusetts)
Deformation theory and quantum groups with applications to mathematical physics: proceedings of a AMS-IMS-SIAM 1990 joint summer research conference held June 14–20 at the University of Massachusetts, Amherst, with support from the National Science Foundation/Murray Gerstenhaber, Jim Stasheff, editors.
p. cm.—(Contemporary mathematics, ISSN 0271-4132; v. 134)“The AMS-IMS-SIAM 1990 Joint Summer Research Conference on Deformation Theory of Algebras and Quantization with Applications to Physics was held June 14–20, 1990 at the University of Massachusetts, Amherst, Massachusetts”—T.p. verso.
ISBN 0-8218-5141-1 (alk. paper)
1. Quantum groups—Congresses. 2. Perturbation (Mathematics)—Conferences.
QC20.7.G76A63 1990 530.1'522—dc20 92-13890 530.1’522—dc20 92-13890
CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Manager of Editorial Services, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248.
The appearance of the code on the first page of an article in this book indicates the copyright owner’s consent for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that the fee of $1.00 plus $.25 per page for each copy be paid directly to the Copyright Clearance Center, Inc., 27 Congress Street, Salem, Massachusetts 01970. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

Copyright ©1992 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.
The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

This volume was printed directly from author-prepared copy.
Portions of the volume were typeset by the authors using \LaTeX, the American Mathematical Society’s \LaTeX macro system.

10 9 8 7 6 5 4 3 2 1 97 96 95 94 93 92
Contents

Preface vii

Hopf algebra actions—revisited
MIRIAM COHEN 1

Link-diagrams, Yang Baxter equations, and quantum holonomy
PAOLO COTTA-RAMUSINO AND MAURIZIO RINALDI 19

Duality and topology of 3-manifolds
LOUIS CRANE 45

Algebras, bialgebras, quantum groups, and algebraic deformations
MURRAY GERSTENHABER AND SAMUEL D. SCHACK 51

Generalized Moyal quantization on homogeneous symplectic spaces
JOSE M. GRACIA-BONDIA 93

A simple construction of bialgebra deformations
ROBERT GROSSMAN AND DAVID RADFORD 115

Integrable deformations of meromorphic equations on P^1(C)
G. F. HELMINCK 119

Quantum groups with two parameters
N. H. JING 129

Quantum group theoretic proof of the addition formula for
continuous q-Legendre polynomials
H. T. KOELINK 139

q-special functions, a tutorial
H. T. KOELINK AND T. H. KOORNWINDER 141

q-special functions and their occurrence in quantum groups
T. H. KOORNWINDER 143

Quantum flag and Schubert schemes
V. LAKSHMIBAI AND N. RESHETIKHIN 145
Homological perturbation theory, Hochschild homology, and formal groups
LARRY A. LAMBE 183

Tannaka-Krein theorem for quasi-Hopf algebras and other results
SHAHN MAJID 219

Simple smash products
SUSAN MONTGOMERY 233

Quantum group of links in a handlebody
JÓZEF H. PRZYTYCKI 235

Quantum Poisson $SU(2)$ and quantum Poisson spheres
ALBERT JEU-LIANG SHEU 247

Deformation cohomology for bialgebras and quasi-bialgebras
STEVEN SHNIDER 259

Drinfel’d’s quasi-Hopf algebras and beyond
JIM STASHEFF 297

Hopf algebra techniques applied to the quantum group $U_q(sl(2))$
MITSUHIRO TAKEUCHI 309

Framed tangles and a theorem of Deligne on braided deformations of Tannakian categories
DAVID N. YETTER 325

Elementary paradigms of quantum algebras
COSMAS ZACHOS 351
Preface

Drinfel’d’s 1986 contribution to the 1986 International Congress of Mathematicians in Berkeley focused the attention of the mathematical world on “quantum groups”. Drinfel’d observed that certain structures playing a central role in the statistical and wave mechanics of Baxter and Yang were in fact Hopf algebras, and that those appearing were of a kind not previously studied but “deformations” of certain classical ones. Quantization had produced these structures (or perhaps deformation had produced the quantization). Although “quantization” may refer to various processes arising in physical quantum theory, some can be singled out as essentially algebraic and closely related to the deformation theory of algebras (commutative, Lie, Hopf, etc.). (The obeisance to physics is sometimes indicated by denoting the deformation parameter by the symbol for Planck’s constant, \hbar or by “q” which is usually interpreted as $\exp i\hbar$.)

The mathematical origins of quantization are venerable, but the new subject of quantum groups is growing so fast, with interactions amongst so many branches of mathematics and physics (including, e.g., knot theory and invariants of 3-manifolds), that there is no clear overview, nor can we expect one for some years. The purpose of the AMS-IMS-SIAM Joint Summer Research Conference in 1990, from which this volume stems, was to bring together researchers both in some areas recently opened and in ones such as “q special functions” which had their origins in the last century but whose relevance to modern physics has only recently been understood. At best, the conference which we organized in June of 1990, while bringing together an international gathering of many mathematicians and a few physicists, could only provide a “snapshot” of progress in a few areas. It almost completely omitted, for example, applications to topology. While we regret that most of the invited Soviet researchers could not attend, this was partly because of a happy fact: perestroika had opened their community and many were then preparing for the Workshop on Quantum Groups, Deformation Theory, and Representation Theory held at the new Euler International Mathematical Institute, St. Petersburg (the still Leningrad) that same October! (This partly erased the unhappy memory that Drinfel’d had not been present at Berkeley in 1986;
his contribution was read by Pierre Cartier. Happy indeed are the memories from the ICM in Kyoto later in the summer of 1990 when Drinfel’ d received the Fields Medal for his work, especially that on quantum groups.)

As for the subject matter, one of the oldest forms of algebraic quantization amounts to the study of deformations of a commutative algebra A (of classical observables) to a noncommutative algebra A_{\hbar} (of operators) with the infinitesimal deformation given by a Poisson bracket on the original algebra A. Physics provides many examples. Perhaps the oldest is Moyal’s, of which the more modern generalization is the quantization (deformation) of the C^∞ smooth functions on a symplectic manifold. Deformations have been studied intensively from this point of view by Lichnerowicz and his school, as noted in extensive references by Drinfel’ d in his ICM talk. In the past decade, a new source of examples has come from the physics of completely integrable systems (KdV, KP, bi-hamiltonian systems) and from the inverse scattering method. As in the original work of Moyal, statistical mechanics and quantum field theory have both called attention to a single new mathematical structure, in this case, the Yang-Baxter equations. The intimate relation between these equations and “quantum groups” is well described in the language of deformation theory.

Quantum groups are not groups at all, but special kinds of Hopf algebras of which the most important are closely related to Lie groups. Even though it is not obvious from their definitions, all those of physical interest seem to be deformations of either the Hopf algebra $F(G)$ of functions on a Lie group G or of a universal enveloping algebra $U(g)$ of a Lie algebra g. The latter can be regarded as the Hopf algebra of distributions-with-support-at-the-identity of G where g is the Lie algebra of the group G.

From the point of view of noncommutative geometry, as well as from that of physical observables, it is the multiplication in $F(G)$ (but not its comultiplication) or the comultiplication in $U(g)$ (but not its multiplication) which should be deformed. For reductive G, it is always possible to deform the one while preserving the other (and every deformation is equivalent to one which does this) even though the formulas in the literature usually deform both. That such “preferred deformations” are possible is a consequence of the appropriate cohomology theory.

We have not tried to arrange the contents by subject. We would surely make too many mistakes. Worse, it might be an invitation to the reader to pick and choose when browsing is more appropriate. Some of the articles here may be obsolete before they are in print. For that we make no apology. In fact, we hope it will be the case, since rapid obsolescence is a measure of progress, which in the subjects treated here seems to be marching with giant strides.

Murray Gerstenhaber
Jim Stasheff
Recent Titles in This Series

(Continued from the front of this publication)

105 Jerome Kaminker, Editor, Geometric and topological invariants of elliptic operators, 1990
104 Michael Makkai and Robert Paré, Accessible categories: The foundations of categorical model theory, 1989
103 Steve Fisk, Coloring theories, 1989
102 Stephen McAdam, Primes associated to an ideal, 1989
100 W. Brent Lindquist, Editor, Current progress in hyperbolic systems: Riemann problems and computations, 1989
99 Basil Nicolaenko, Ciprian Foias, and Roger Temam, Editors, The connection between infinite dimensional and finite dimensional dynamical systems, 1989
98 Kenneth Appel and Wolfgang Haken, Every planar map is four colorable, 1989
97 J. E. Marsden, P. S. Krishnaprasad, and J. C. Simo, Editors, Dynamics and control of multibody systems, 1989
96 Mark Mahowald and Stewart Priddy, Editors, Algebraic topology, 1989
95 Joel V. Brawley and George E. Schnibben, Infinite algebraic extensions of finite fields, 1989
92 John W. Gray and Andre Secerov, Editors, Categories in computer science and logic, 1989
91 David Colella, Editor, Commutative harmonic analysis, 1989
90 Richard Randell, Editor, Singularities, 1989
89 R. Bruce Richter, Editor, Graphs and algorithms, 1989
88 R. Fossum, W. Haboush, M. Hochster, and V. Lakshmibai, Editors, Invariant theory, 1989
87 Laszlo Fuchs, Rüdiger Gobel, and Phillip Schultz, Editors, Abelian group theory, 1989
86 J. Ritter, Editor, Representation theory and number theory in connection with the local Langlands conjecture, 1989
85 Bor-Luh Lin, Editor, Banach space theory, 1989
84 Stevo Todorcevic, Partition problems in topology, 1989
83 Michael R. Stein and R. Keith Dennis, Editors, Algebraic K-theory and algebraic number theory, 1989
82 Alexander J. Hahn, Donald G. James, and Zhe-xian Wan, Editors, Classical groups and related topics, 1989
81 Kenneth R. Meyer and Donald G. Saari, Editors, Hamiltonian dynamical systems, 1988
80 N. U. Prabhu, Editor, Statistical inference from stochastic processes, 1988
79 Ernst Kunz and Rolf Waldr, Regular differential forms, 1988
78 Joan S. Birman and Anatoly Libgober, Editors, Braids, 1988
77 Wang Yuan, Yang Chung-chun, and Pan Chengbiao, Editors, Number theory and its applications in China, 1988
76 David C. Hobby and Ralph McKenzie, The structure of finite algebras, 1988
75 Frank M. Cholewinski, The finite calculus associated with Bessel functions, 1988

(See the AMS catalog for earlier titles)
Quantum groups are not groups at all, but special kinds of Hopf algebras of which the most important are closely related to Lie groups and play a central role in the statistical and wave mechanics of Baxter and Yang. Those occurring physically can be studied as essentially algebraic and closely related to the deformation theory of algebras (commutative, Lie, Hopf, and so on). One of the oldest forms of algebraic quantization amounts to the study of deformations of a commutative algebra A (of classical observables) to a noncommutative algebra A_h (of operators) with the infinitesimal deformation given by a Poisson bracket on the original algebra A.

This volume grew out of an AMS-IMS-SIAM Joint Summer Research Conference, held in June 1990 at the University of Massachusetts at Amherst. The conference brought together leading researchers in the several areas mentioned and in areas such as "q special functions", which have their origins in the last century but whose relevance to modern physics has only recently been understood. Among the advances taking place during the conference was Majid’s reconstruction theorem for Drinfel’d’s quasi-Hopf algebras. Readers will appreciate this snapshot of some of the latest developments in the mathematics of quantum groups and deformation theory.