The Reconstruction of Trees from Their Automorphism Groups

Matatyahu Rubin
Recent Titles in This Series

151 Matatyahu Rubin, The reconstruction of trees from their automorphism groups, 1993
150 Carl-Friedrich Bödigheimer and Richard M. Hain, Editors, Mapping class groups and moduli spaces of Riemann surfaces, 1993
149 Harry Cohn, Editor, Doeblin and modern probability, 1993
148 Jeffrey Fox and Peter Haskell, Editors, Graph structure theory, 1993
147 Martin C. Tangora, Editor, Algebraic topology, 1993
146 Jeffrey Adams, Rebecca Herb, Stephen Kudla, Jian-Shu Li, Ron Lipsman, Jonathan Rosenberg, Editors, Representation theory of groups and algebras, 1993
145 Bor-Luh Lin and William B. Johnson, Editors, Banach spaces, 1993
144 Marvin Knopp and Mark Sheingorn, Editors, A tribute to Emil Grosswald: Number theory and related topics, 1993
143 Chung-Chun Yang and Sheng Gong, Editors, Several complex variables in China, 1993
142 A. Y. Cheer and C. P. van Dam, Editors, Fluid dynamics in biology, 1993
141 Eric L. Grinberg, Editor, Geometric analysis, 1992
140 Vinay Deodhar, Editor, Kazhdan-Lusztig theory and related topics, 1992
139 Donald St. P. Richards, Editor, Hypergeometric functions on domains of positivity, Jack polynomials, and applications, 1992
137 Peter Walters, Editor, Symbolic dynamics and its applications, 1992
136 Ron Donagi, Editor, Curves, Jacobians, and Abelian varieties, 1992
135 F. Thomas Bruss, Thomas S. Ferguson, and Stephen M. Samuels, Editors, Strategies for sequential search and selection in real time, 1992
134 Mark Gotay, Jerrold Marsden, and Vincent Moncrief, Editors, Mathematical aspects of classical field theory, 1992
133 Murray Gerstenhaber and Jim Stasheff, Editors, Deformation theory and quantum groups with applications to mathematical physics, 1992
132 Darrell Haile and James Osterburg, Editors, Azumaya algebras, actions, and modules, 1992
131 Steven L. Kleiman and Anders Thorup, Editors, Enumerative algebraic geometry, 1991
130 R. Keith Dennis, Claudio Pedrini, and Michael R. Stein, Editors, Algebraic K-theory, commutative algebra, and algebraic geometry, 1992
129 L. Fuchs, K. R. Goodearl, J. T. Stafford, and C. Vinsonhaler, Editors, Abelian groups and noncommutative rings, 1992
128 Vladimir Oliker and Andrejs Treibergs, Editors, Geometry and nonlinear partial differential equations, 1992
126 Alex J. Feingold, Igor B. Frenkel, and John F. X. Ries, Spinor construction of vertex operator algebras, triality, and \(E_8^{(1)} \), 1991

(Continued in the back of this publication)
The Reconstruction of Trees from Their Automorphism Groups

Matatyahu Rubin
Contents

Summary vii

0. An extended introduction 1

1. Some preliminaries concerning interpretations, groups and \aleph_0-categoricity 29

2. A new reconstruction theorem for Boolean algebras 43

3. The completion and the Boolean algebra of a U-tree 57

4. The statement of the canonization and reconstruction theorems 63

5. The canonization of trees 73

6. The reconstruction of the Boolean algebra of a U-tree 87

7. The reconstruction of $\text{PT} (\text{Exp}(M))$ 135

8. Final reconstruction results 153

9. Observations, examples and discussion 155

10. Augmented trees 169

11. The reconstruction of \aleph_0-categorical trees 205

12. Nonisomorphic 1-homogeneous chains which have isomorphic automorphism groups 243

Bibliography 251

A list of notations and definitions 253
Summary

This work addresses the following question: "Find meaningful necessary and sufficient conditions for two trees to have isomorphic automorphism groups." To answer this question, we consider a more general type of structures, called unary trees.

Definition: (a) A poset \((T, <)\) is a tree, if for every \(t \in T, \{s \in T | s < t\}\) is linearly ordered by \(<\). \(M = (T, <, \{P_i\}_{i \in I})\) is a unary tree (U-tree), if \((T, <)\) is a tree, and for every \(i \in I, P_i \subseteq T\). Informally, A U-tree is a structure which is a tree together with a list of named subsets, each of which is required to be invariant under all automorphisms of the structure. So, for the above \(M, \text{Aut}(M) = \{f \in \text{Aut}(T, <) | (\forall i \in I)(f(P_i) = P_i)\}\).

(b) Let \(M\) be as in (a), then \(T(M)\) denotes \(\langle T, <, \sim \rangle\), where \(s \sim t\) means that there is \(g \in \text{Aut}(M)\) such that \(g(s) = t\). That is, we replace the named subsets of \(M\) by the single binary relation \(\sim\).

(c) A class \(L\) of U-trees is faithful, if for every \(M, N \in L\): if \(\text{Aut}(M) \cong \text{Aut}(N)\), then \(T(M) \cong T(N)\). Clearly, for trees: \(T(M) \cong T(N) \Rightarrow M \cong N\). So, for a faithful class \(L\) of trees and \(M, N \in L\): \(\text{Aut}(M) \cong \text{Aut}(N) \Rightarrow M \cong N\).

The answer to the main question cannot be easily stated. One ingredient in the answer, is finding large faithful classes of U-trees. Theorem 1 below is an example of such a result. Our more general theorems come close to showing that the faithful class of theorem 1 cannot be enlarged.

Definition: Let \(M = \langle T, <, \ldots \rangle\) be a U-tree. (a) \(\text{Max}(M)\) denotes the set of maximal elements of \(M\). \(A \subseteq T\) is an interval of \(M\), if \(A\) is linearly ordered by \(<\), and for every \(s, t \in A\) and \(u \in T\): if \(s < u < t\), then \(u \in A\). Let \(s, t \in T\). \(\text{Or}(t; s)\) denotes \(\{f(t) | f \in \text{Aut}(M) \text{ and } f(s) = s\}\). \(t\) is called a successor of \(s\) (\(t \in \text{Suc}(s)\)), if \(s < t\) and \(\{s, t\}\) is an interval.

(b) \(M\) is complete, if: (1) Every \(\emptyset \neq A \subseteq T\) has an infimum (\(\inf(A)\)); (2) Every interval in \(T\) has a supremum; and (3) If \(A\) and \(B\) are disjoint nonempty intervals, then \(\inf(A) \neq \inf(B)\).
Every U-tree \(M \) has a naturally defined completion \(N \). The named subsets of \(N \) are: \(M \), and all the named subsets of \(M \). It follows that \(Aut(N) \cong Aut(M) \). So, when seeking faithful classes, we may consider only complete U-trees.

Theorem 1: The class of all U-trees \(M \) satisfying conditions (1)-(4) below, is faithful. (1) \(M \) is complete. (2) For every \(s \in M \): \(|\text{Suc}(s)| \neq 1 \). (3) For every \(s \in M \): either for all \(u, v \in \text{Suc}(s) \): \(u \sim v \), or for all distinct \(u, v \in \text{Suc}(s) \): \(u \not\sim v \). (4) For every \(s \in M \) and \(t > s \): if \(|\text{Or}(t; s)| \leq 2 \), then \(t \in \text{Suc}(s) - \text{Max}(M) \).

For the class of \(\aleph_0 \)-categorical U-trees, the main question has the following complete answer. A class \(K_{\text{CAT}} \) of \(\aleph_0 \)-categorical U-trees is defined by listing five properties similar to properties (1)-(4) of theorem 1. (See 0.6.) We prove that \(K_{\text{CAT}} \) is faithful, and that if \(M \) is an \(\aleph_0 \)-categorical U-tree, then there is \(N \in K_{\text{CAT}} \) such that \(Aut(M) \cong Aut(N) \).

The situation in the class of all trees is similar, but more complex.
The Reconstruction of Trees from Their Automorphism Groups
Matatyahu Rubin

Trees, sometimes called semilinear orders, are partially ordered sets in which every initial segment determined by an element is linearly ordered. This book focuses on automorphism groups of trees, providing a nearly complete analysis of when two trees have isomorphic automorphism groups. Special attention is paid to the class of \aleph_0-categorical trees, and for this class the analysis is complete. Various open problems, mostly in permutation group theory and in model theory, are discussed, and a number of research directions are indicated. Aimed at graduate students and researchers in model theory and permutation group theory, this self-contained book will bring readers to the forefront of research on this topic.