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Introduction 

The foundation of an algebraic theory of binary relations was laid by C. S. 
Peirce, building on earlier work of Boole and De Morgan (see Peirce [1882]). The 
basic universe of discourse of this theory is a collection of binary relations over 
some set, and the basic operations on these relations are those of forming unions, 
complements, compositions, and inverses. There is also a distinguished relation, the 
identity relation. Other operations and distinguished relations studied by Peirce 
are definable in terms of the ones just mentioned. Let us call such an algebra of 
relations a proper relation algebra. 

A modern development of this theory as a theory of abstract algebras, 

!21 = (A, +, - , ; , ~ , 1'} 

axiomatized by a finite set of equations, was undertaken by Tarski and his students 
and colleagues, beginning around 1940. In this development, (A, +, -} is an 
abstract Boolean algebra, the operations ; and ~ are abstract versions of relational 
composition and inversion, and 1' is a distinguished constant with properties similar 
to those of the identity relation. 

Chin-Tarski [1951] contains an axiomatic study of the arithmetic of these ab-
stract relation algebras. Special types of elements are defined-often, these are ab-
stractions of well-known types of binary relations-and laws about such elements 
are derived from the basic postulates of the theory. To give some examples, equiv-
alence elements e and functional elements f of a relation algebra !21-abstractions 
of equivalence relations and functions-are defined respectively by the following 
conditions: 

e; e $ e and e~ $ e f~ ; f $ 1' 
It is shown, for example, that f is a functional element iff it satisfies the following 
distributive law: 

f; (a· b)=(!; a)·(!; b) for all a,b E A 

(here,"·" denotes Boolean multiplication). 
Building on op. cit. and on J6nsson-Tarski [1951], J6nsson-Tarski [1952] un-

dertakes a study of the algebraic properties of relation algebras. For example, the 
notion of a relation algebraic ideal is introduced, and its connections with homo-
morphisms are established. Ideals are characterized in terms of special element.s e , 
called ideal elements, that satisfy the equation 1 ; e; 1 = e (here, 1 is the Boolean 
unit). Ideal elements are particular examples of equivalence elements, and they can 
be alternately characterized as elements e that satisfy the distributive law 

e ·(a; b)= (e ·a); (e ·b) for all a,b E A 

ix 
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With the help of this characterization, one shows that, for an arbitrary element e 
of!!, the mapping a ~----+ a· e is a homomorphism on !! iff e is an ideal element. In 
this case, the homomorphic image of!! under the mapping is the algebra 

!!(e)= (A(e), +, -e, ; , ~, l'·e) 

where A( e) = {a E A : a :::; e}, while -e is complementation relative to e, and 
the other operations have the same meaning as in !! . The algebra !!(e) is called 
the relativization of!! to e . One can actually form the relativization of a relation 
algebra to an arbitrary equivalence element, and not just to an ideal element. 

Relativizations play an important role, not only in the study of homomorphic 
images of relation algebras, but also in the study of direct decompositions. For 
example, Jonsson and Tarski show that a relation algebra m is isomorphic to a 
direct product 23 x It iff there is an ideal element e in !! such that m( e) ~ 23 
and !!(e-)~ lt. Using this, they then prove that directly indecomposable-and 
hence also subdirectly indecomposable-relation algebras are simple. Hence, every 
relation algebra is the sub direct product of simple relation algebras. 

One of the main focuses of Jonsson-Tarski [1952] is the study ofrepresentation 
problems: when is an abstract relation algebra representable as, i.e., isomorphic to, 
a proper relation algebra? Lyndon [1950] proves that not every abstract relation 
algebra is representable in this way. Thus, an important task of the algebraic the-
ory is to find interesting and general conditions that do imply representability. For 
example, using the results of Jonsson-Tarski [1951], Jonsson and Tarski prove that 
every relation algebra is embeddable into a complete and atomic relation algebra. 
Further, they prove that an atomic relation algebra in which every atom is func-
tional must be representable. The distributive law for functional elements that was 
mentioned before plays an important role in the proof. 

In addition to their central role in the study of homomorphisms and direct 
decompositions, relativizations can also play an important role in establishing rep-
resentation theorems and in describing relation algebras generated by certain kinds 
of elements. Imagine, for example, that we wish to describe the subalgebra of a 
relation algebra m generated by a certain sequence of elements, {a-y : 'Y E f), in m. 
One might proceed as follows: 

(i) Construct a suitable sequence (ee : e E S) of pairwise disjoint equivalence 
elements that are generated by the sequence {a-y : 'Y E r), and such that 
each a-y is below some ee . 

(ii) Describe the subalgebra !Be of!!( ee) generated by { a-y : a-y :::; ee} . 

(iii) Describe the subalgebra of m generated by (!Be : e E S), i.e., generated by 
the set Uee:::Be . 

For example, Jonsson [1988] describes all relation algebras generated by a 
single equivalence element a . In particular, he proves that all such algebras are 
representable. His proof can be seen to have the following form. First, he shows 
that a generates three pairwise disjoint equivalence elements, a1 , a2 , and a3 , such 
that a = a1 + a2 + a3 and 

(1) (a1·0'); (a1·0') = 0 
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{here, 0' is the complement of 1' ). Next, he defines 1i = (ai · 1') ; 1 ; (ai · 1') for 
i = 1, 2, 3, and he observes that 11 , 12, and 1a are pairwise disjoint equivalence 
elements with ai $ 1i for each i. With the essential help of (1), he describes the 
subalgebra ~i of m(1i) generated by ai' under the assumption that m is simple. 
{This is not an essential restriction, in view of the sub direct decomposition theorem 
referred to above.) In particular, he shows that each ~i is finite and representable. 
Finally, still assuming that m is simple, he describes the subalg~bra of m generated 
by B1 U B2 U B3 . He proves, in the process, that it must be finite and representable. 
Orally, Jonsson posed the problem whether a relation algebra generated by a finite 
chain of equivalence elements is necessarily finite and representable. 

The following questions emerge from our discussion. 

{I) Let (ee : e E S} be a sequence of pairwise disjoint equivalence elements in a 
relation algebra m, and, for each e E S , suppose that ~e is a subalgebra of 
the relativization m(ee). Can we describe the subalgebra, <5g!a(Uee::::Be), 
generated by (~e : e E S } in m? 

{II) What properties of the algebras ~e does <5g!a(Uee::::Be) inherit? For exam-
ple, if each ~e is representable, must <5g!a(Uee::::Bd be representable? If S 
is finite, and if each ~e is finite, must <5g!a(Uee::::Be) be finite? 

The main purpose of the present work is to give a complete description of 
<5g!a(Uee::::Be) in terms of the elements and operations of the algebras ~{. As a 
consequence of this description, we will obtain, for example, affirmative answers to 
the two last questions posed in (II). Moreover, in the case when m is simple, we 
shall show that certain other properties, such as atomicity, are also inherited by 
<5g!a(Uee::::Bd · 

To give a flavor of the description, let's concentrate on the case when m is 
simple and there is just one equivalence element, e, in our sequence. Moreover, 
let's assume that e is reflexive, i.e., 1' $ e. Given a subalgebra ~ of m(e), we 
want to describe <5g!a B . We shall prove that the elements of <5g!a B are just the 
finite sums of elements of~ and elements of the form :c; e- ; y, where :c and y 
are subidentity elements of~, i.e., elements of~ that are below the identity. For 
reasons that will become clear later, we call elements of the form :c; e- ; y rectangles. 
They are disjoint from the elements of ~ . 

Most of the operations of <5g!a B can be described rather easily in terms of the 
operations of~. For example, if :c, y are subidentity elements, and a an arbitrary 
element, of ~ , then 

(:c; e- ; y)- = :c-1' ; e- ; y + :z:; e- ; y- 1' + :c- 1'; e- ; y-1' + e 

. (:c; e- ; y)~ = y; e- ; :c 
(:c; e- ; y) · (u; e-; v) = (:c·u); e-; (y·v) 

a ; ( :c ; e- ; y) = (a ; :c ; e · 1 ') ; e- ; y 

(in the first equation, :c-1' denotes the complement of :c relative to 1' ). The de-
scription of the relative product of two rectangles, :c; e- ; y and u; e- ; v, however, 
is more delicate. It has one of four possible values, depending on the "size" of the 
ideal element e ; (y · v) ; e of ~ . To handle this situation, we introduce a measure 
II II on the ideal elements of~. The measure has one of four possible values, 0, 
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1, 2, or 3 (all numbers greater than or equal to 3 are identified'with oo), according 
as the ideal element is either 0 or "spans" 1 , 2 , or at least 3 of the "equivalence 
classes" of e. Set b = e; (y·u); e. We then have: 

{ 
o if II b II= o 

( _ ) ( _ ) (x·b-1');1;(v·b-1') ifllbll=1 
x;e ;y; u;e ;v = , , . 

(x · b- 1 ) ; 1 ; v + x; 1 ; ( v · b- 1 ) + x; e; v 1f II b II = 2 
X ; 1 ; v if II b II = 3 

This completes the description of <5g21 B. Using it, we shall readily show that if~ 
is finite, atomic, integral, or finitely decomposable (into a direct product of simple 
algebras), then so is <5g21 B. 

It is natural to ask: Upon what essential properties of ~ and 2{ does the 
structure of <5g21 B depend? Certainly, the isomorphism type of~ and the value 
of II II on ideal elements of~ are important. As it turns out, nothing else plays 
an essential role. For a precise statement of this result, let 2{ and 2!' be simple 
relation algebras, e and e' reflexive equivalence elements in 2{ and 2!' , and ~ and 
~' subalgebras of 2!(e) and 2!'(e') respectively. Suppose that tJ is an isomorphism 
of~ onto~' which preserves measure, i.e., 

II b II= II tJ(b) II for every ideal element b of ~ 

Then, as we will prove, tJ can be (uniquely) extended to an isomorphism of <5g21 B 
onto <5g21' B'. 

We turn now to another, though ultimately related, problem: Does every rela-
tion algebra~ "sit inside or' some simple relation algebra? If so, is there a minimal 
simple relation algebra "containing" ~ , a kind of simple closure of ~? If so, is 
this simple closure in some sense unique? 

The unit of a relation algebra is always an equivalence element. Therefore, it is 
natural to interpret the first question as asking whether there exist a simple relation 
algebra 2{ and an equivalence element e in 2{ such that ~ = 2!( e) . For 2{ to be 
minimal, it should "fit" around ~ as "tightly" as possible. This means that 2{ and 
~ should have the same identity element, and that ~ should generate 2{. Thus, 
we arrive at the following definition: a relation algebra 2{ is a simple closure of~ 
iff 2{ is simple, there is a reflexive equivalence element e in 2{ such that ~ = 2!( e) , 
and 2{ = <5g21 B . Our problem can now be formulated quite precisely: Does every 
relation algebra have a simple closure, and, if so, in what sense is it unique? 

We shall prove the following existence and uniqueness theorems for simple 
closures. Every relation algebra ~ has a simple closure, and, in fact, for any 
appropriate four-valued measure J.l. on the ideal elements of ~ , there is a simple 
closure of ~ such that II II = J.l. • If ~ is finite or representable, then so is each 
such simple closure. Moreover, if 2{ and 2!' are two simple closures of ~ , say 
~ = 2!( e) = 2!' ( e') , and if the measure II II gives the same value in 2! as it does in 
2{' on the ideal elements of ~ , then 2{ is isomorphic to 2!' via an isomorphism that is 
the identity mapping on B and that preserves measure. In other words, the simple 
closure is uniquely determined by the isomorphism type of ~ and the measure J.1. • 
This uniqueness is a consequence of the isomorphism theorem that we described 
above. As a result of the existence and uniqueness theorems, we can show that, 
e.g., a relation algebra with 2n ideal elements has, up to isomorphisms, exactly an 
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simple closures. As a further consequence, we show that if ~ is a subalgebra of a 
relativization !2l( e) , then <5g2l B is representable iff ~ is representable. 

We shall also prove a generalization of the existence and uniqueness theorems: 
every sequence {~e : e E 3) of essentially disjoint (except for 0) relation algebras, 
with a corresponding sequence of appropriate measures (J.te : e E 3), has a simple 
closure such that II II agrees with J.te on the ideal elements of ~e for each e. Again, 
the simple closure is uniquely determined by the isomorphism types of the algebras 
in the sequence and by the measures. It is representable iff each of the algebras ~e 
is representable. We then establish the representation theorem mentioned in (II): 
<5g2l(UeesBe) is representable iff each ~e is representable. 

As an application of our results, we investigate relation algebras generated 
by systems of equivalence elements. Let '! = (T, ~) be a tree. We define a 
system ( et : t E T) of equivalence elements in some relation algebra to be a tree 
of equivalence elements (indexed by '!) iff e5 ~ et whenever s ~ t , and e5 • et = 0 
whenever s and t are incomparable in '!. We shall prove that any relation algebra !2l 
generated by a tree of equivalence elements (or even by a pseudo-tree of equivalence 
elements) is representable. Moreover, if the tree is finite, then so is !2l. As a 
consequence, we see that Jonsson's problem has an affirmative solution: every 
relation algebra generated by a finite chain of equivalence elements is finite and 
representable. We give examples to show that, in some sense, our results are the best 
possible. For example, it is not true that an arbitrary finite sequence of equivalence 
elements generates a relation algebra that is either finite or representable. 

There are certain philosophical implications of the existence theorems for sim-
ple closures that should perhaps be mentioned. We usually think of the simple 
algebras-in the case of relation algebras these coincide with the subdirectly irre-
ducible algebras-as the most basic building blocks by means of which the more 
complicated algebras of a theory can be constructed. In some sense, the simple 
algebras seem to be the easiest algebras to understand and to work with. The 
existence theorem shows that, as far as relation algebras are concerned, this be-
lief is illusory. Simple algebras contain, within their algebraic structure, all of the 
complexity of arbitrary relation algebras, because they contain arbitrary relation 
algebras as relativizations. Succinctly put: Simple algebras aren't simple! 

We give, now, a brief outline of the organization of the book. Chapter 1 presents 
the basic definitions and laws that will be used throughout this work. The laws 
in 1.6, 1.7, 1.9, 1.14, and 1.16 are referred to quite frequently. Chapter 2 contains 
the basic algebraic material on homomorphisms, ideals, relativizations, direct and 
subdirect decompositions, and perfect extensions. The presentation of direct (and 
sub direct) decompositions is in terms of inner direct products-well known from 
group theory-as opposed to the usual outer, or Cartesian, direct products. Also, 
a notion of the inner direct sum of relation algebras is introduced. Theorem 2.18 
contains a characterization of each type of inner decomposition. Some of the results 
in the chapter appear to be new, for example, 2.21, 2.25, and 2.26. 

Jonsson [1988] shows that if e is an equivalence element in a simple relation 
algebra, then e- ; e- has one of exactly three values: 0, e, or 1. Unfortunately, for 
non-reflexive equivalence elements, we always have e- ; e- = 1. It is more useful to 
look at the value of e- ;e- relative toe; 1 ;e. In 3.5 we prove that, in a simple relation 
algebra, either e is 0, or else it is different from 0 and [e- · ( e ; 1 ; e)] ; [e- · ( e ; 1 ; e)] 
has exactly one of the three values 0 , e , or e ; 1 ; e . Thus, we can assign a unique 
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number, 0 , 1 , 2 , or 3 , to e according to which of these four cases holds. We 
denote this number by II e II, and call it the characteristic of e. If e is a symmetric, 
transitive relation on a non-empty set U, then II e II is 0, 1, 2, or 3 in the full set 
relation algebra on U iff e has zero, one, two, or at least three equivalence classes 
(as an equivalence relation on its field). In an arbitrary relation algebra 2{, not 
every equivalence element e has a characteristic. We show, however, in Theorem 
3.12 that 2{ and e can be decomposed (or ''factored") into pieces 2{i and ei, for 
i = 0, 1, 2, 3, so that II ei II = i in 2{ and in ~. 

Since an ideal element is always an equivalence element, every ideal element b 
of 2l(e) will have a characteristic, II b II, when 2{ is simple. In set-theoretic terms, 
II b II is a measure of the number of equivalence classes of e that b spans. Thus, 
the notion of the characteristic of an ideal element of 2!( e) leads to the concept of 
a positive· measure on these ideal elements. It is natural to restrict the range of 
such measures to four values, 0, 1, 2, and 3, because relation algebras can't count 
beyond 3, i.e., they can't distinguish the numbers greater than or equal to 3 from 
one another, or from oo. In 3.16 we prove that, in a simple relation algebra 2{, II II 
is a completely additive measure on the Boolean algebra of ideal elements of 2!( e). 
Finally, we show in 3.26 that, if an isomorphism il between relativizations 2!( e) and 
2l'(e') preserves II II, then the canonical extension of il to the perfect extensions of 
2l(e) and 2l'(e') also preserves II II· 

Chapter 4 develops the arithmetic of rectangles necessary to describe the op-
erations of Sg~ B when 23 ~ 2!( e) . The most involved of these laws are the ones 
describing the relative product of two rectangles. They are given in 4.7. 

The principal results of the book are contained in Chapters 5-7. Theorem 5.1 
gives the description of the subalgebra, Sg~ B , generated in 2{ by a subalgebra 23 
of 2l(e). The simplification of 5.1 that results when we assume 2{ to be simple is 
given in 5.3. We conclude in 5.7 that if 23 is, e.g., integral or finitely decomposable, 
then so is Sg~ B. When 2{ is simple, Sg~ B also inherits atomicity from 23. The 
generalizations of 5.1 and 5.3 to finite sequences {ee : e E S) of pairwise disjoint 
equivalence elements of 2{, and {!Be : e E S) , with !Be a subalgbera of 2!( ee) for 
each e, are given in 5.10 and 5.11, and the generalizations to infinite sequences 
are given in 5.16 and 5.17. In the case when 2{ is not necessarily simple, but at 
any rate 23 has only finitely many ideal elements, we give-in 5.21-an explicit 
decomposition of Sg~ B into finitely many simple factors. 

Chapter 6 begins with the isomorphism theorems, 6.1 and 6.2, for Sg~ B and 
6g2l(Uee:::Be), that we referred to earlier. As a direct consequence of these, we 
obtain the uniqueness theorem for simple closures, 6.5. Theorems 6.6 and 6.10 
contain the existence theorems for simple closures of representable relation alge-
bras and abstract relation algebras, respectively. The generalizations to arbitrary 
sequences of (almost disjoint) representable relation algebras and abstract relation 
algebras are given in 6.7 and 6.11 respectively. As a consequence of 6.2, 6.6, and 
6.7, we prove in 6.8 and 6.9 that Sg~ B is representable iff 23 is representable, and 
that 6g2l (Uee:::Be) is representable iff each !Be is representable. 

The representation theorems for relation algebras generated by trees or pseudo-
trees of equivalence elements are given in 7.2 and 7.3. The chapter concludes with 
a sequence of counterexamples to show that various suggested extensions of our 
results do not hold. 

I have tried to make the results of the book accessible to readers who are not 
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experts in the theory of relation algebras. Readers familiar with the field might 
want to skip over the material in Chapters 1 and 2 initially. They could begin with 
Chapter 3, then skip to the main results in Chapters 5, 6, and 7, referring back to 
the earlier material, in particular, the laws in Chapter 4, as needed. 

It is a pleasure to acknowledge my indebtedness to those who helped me during 
the course of this work. First of all, it was Bjarni Jonsson who posed the original 
problem (mentioned above) that eventually led to the results presented here. With-
out his interest in the subject, this monograph would never have been written. I am 
also very grateful to Hajnal Andreka, Peter Jipsen, Roger Maddux, Istvan Nemeti, 
and Richard Thompson for their interest in this research, for their stimulating 
discussions, and for their individual contributions-which are, of course, properly 
credited to them at appropriate places. The research, itself, was supported in part 
by the Letts-Villard endowed professorship at Mills College, and in part by a grant 
from the Institute for Research and Exchanges, IREX. Some of the results were 
announced at the Icelandic Symposium in honor of Bjarni Jonsson, 1990, at a con-
ference on algebraic logic held at Mills College, 1990, and in Givant [1990]. Some 
extensions of the results in this book to the theory of cylindric algebras have been 
obtained by the author in collaboration with Hajnal Andreka and Istvan Nemeti. 
These results will appear elsewhere. 
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