Geometry of the Spectrum

1993 Joint Summer Research Conference on Spectral Geometry
July 17-23, 1993
University of Washington, Seattle

Robert Brooks
Carolyn Gordon
Peter Perry
Editors
Recent Titles in This Series

173 Robert Brooks, Carolyn Gordon, and Peter Perry, Editors, Geometry of the spectrum, 1994
172 Peter E. Kloeden and Kenneth J. Palmer, Editors, Chaotic numerics, 1994
171 Rüdiger Göbel, Paul Hill, and Wolfgang Liebert, Editors, Abelian group theory and related topics, 1994
170 John K. Beem and Krishan L. Duggal, Editors, Differential geometry and mathematical physics, 1994
168 Gary L. Mullen and Peter Jau-Shyong Shiue, Editors, Finite fields: Theory, applications, and algorithms, 1994
165 Barry Mazur and Glenn Stevens, Editors, p-adic monodromy and the Birch and Swinnerton-Dyer conjecture, 1994
164 Cameron Gordon, Yoav Moriah, and Bronislaw Wajnryb, Editors, Geometric topology, 1994
163 Zhong-Ci Shi and Chung-Chun Yang, Editors, Computational mathematics in China, 1994
162 Ciro Ciliberto, E. Laura Livorni, and Andrew J. Sommese, Editors, Classification of algebraic varieties, 1994
161 Paul A. Schweitzer, S. J., Steven Hurder, Nathan Moreira dos Santos, and José Luis Arraut, Editors, Differential topology, foliations, and group actions, 1994
160 Niky Kamran and Peter J. Olver, Editors, Lie algebras, cohomology, and new applications to quantum mechanics, 1994
159 William J. Heinzer, Craig L. Huneke, and Judith D. Sally, Editors, Commutative algebra: Syzygies, multiplicities, and birational algebra, 1994
158 Eric M. Friedlander and Mark E. Mahowald, Editors, Topology and representation theory, 1994
157 Alfio Quarteroni, Jacques Periaux, Yuri A. Kuznetsov, and Olof B. Widlund, Editors, Domain decomposition methods in science and engineering, 1994
156 Steven R. Givant, The structure of relation algebras generated by relativizations, 1994
155 William B. Jacob, Tsit-Yuen Lam, and Robert O. Robson, Editors, Recent advances in real algebraic geometry and quadratic forms, 1994
154 Michael Eastwood, Joseph Wolf, and Roger Zierau, Editors, The Penrose transform and analytic cohomology in representation theory, 1993
153 Richard S. Elman, Murray M. Schacher, and V. S. Varadarajan, Editors, Linear algebraic groups and their representations, 1993
152 Christopher K. McCord, Editor, Nielsen theory and dynamical systems, 1993
151 Matatyahu Rubin, The reconstruction of trees from their automorphism groups, 1993
150 Carl-Friedrich Bödigheimer and Richard M. Hain, Editors, Mapping class groups and moduli spaces of Riemann surfaces, 1993
149 Harry Cohn, Editor, Doeblin and modern probability, 1993
148 Jeffrey Fox and Peter Haskell, Editors, Index theory and operator algebras, 1993
147 Neil Robertson and Paul Seymour, Editors, Graph structure theory, 1993
146 Martin C. Tangora, Editor, Algebraic topology, 1993
145 Jeffrey Adams, Rebecca Herb, Stephen Kudla, Jian-Shu Li, Ron Lipsman, and Jonathan Rosenberg, Editors, Representation theory of groups and algebras, 1993

(Continued in the back of this publication)
Geometry of the Spectrum

1993 Joint Summer Research Conference
on Spectral Geometry
July 17–23, 1993
University of Washington, Seattle

Robert Brooks
Carolyn Gordon
Peter Perry
Editors

American Mathematical Society
Providence, Rhode Island
This volume contains the proceedings of the 1993 AMS-IMS-SIAM Joint Summer Research Conference on Spectral Geometry which was held at the University of Washington, Seattle, on July 17–23, 1993. This conference was supported in part by the National Science Foundation and the International Science Foundation.

1991 Mathematics Subject Classification. Primary 58G25, 35R30; Secondary 05C25, 22E27, 53C20.

Library of Congress Cataloging-in-Publication Data

p. cm. — (Contemporary mathematics, ISSN 0271-4132; 173)
Includes bibliographical references.
ISBN 0-8218-5185-3
QA614.95.G46 1994 516.3'62—dc20 94-26306
94-26306
CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Manager of Editorial Services, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

The appearance of the code on the first page of an article in this publication (including abstracts) indicates the copyright owner's consent for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that the fee of $1.00 plus $.25 per page for each copy be paid directly to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, Massachusetts 01923. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

© Copyright 1994 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

Printed on recycled paper.

All articles in this volume were printed from copy prepared by the authors.

Some articles were typeset using \LaTeX or \AMSTeX, the American Mathematical Society’s \TeX macro systems.

10 9 8 7 6 5 4 3 2 1 99 98 97 96 95 94
Contents

An inverse problem and spectral invariants for billiards
   EDOH Y. AMIRAN 1

Spherical functions and transforms on finite upper half planes: Eigenvalues of
   the combinatorial Laplacian, uncertainty, traces
   JEFF ANGEL, STEVE POULOS, AUDREY TERRAS, CINDY TRIMBLE,
   AND ELINOR VELASQUEZ 15

$L^p$ spectral geometry
   ROBERT BROOKS 71

An $L^p$ spectral bootstrap theorem
   ROBERT BROOKS AND PAUL GLEZEN 89

Finite part of spectrum and isospectrality
   XIANZHE DAI AND GUOFANG WEI 99

Nonexistence of universal upper bounds for the first positive eigenvalue of the
   Laplace-Beltrami operator
   JÓZEF DODZIUK 109

Convergence of the eigenvalues of Laplacians in a class of finite graphs
   KOJI FUJIWARA 115

Isospectral closed Riemannian manifolds which are not locally isometric,
   Part II
   CAROLYN S. GORDON 121

The length spectrum and representation theory on two and three-step nilpo-
   tent Lie groups
   RUTH GORNET 133

A few remarks on the billiard ball problem
   EUGENE GUTKIN 157

Hyperbolic cusp forms and spectral simplicity on compact hyperbolic surfaces
   LIZHEN JI AND STEVEN ZELDITCH 167

Inverse boundary problems on Riemannian manifolds
   YAROSLAV KURYLEV 181
CONTENTS

Spectral theory of the differential Laplacian on the modified Koch curve
LEONID MALOZEMOV 193

Conjugate geodesic flows in negatively curved manifolds
YIPING MAO 225

Variétés isospectrales et représentations de groupes
HUBERT PESCE 231

On differences of eigenvalues for flat tori and hyperbolic surfaces
YIANNIS N. PETRIDIS 241

Combinatorics of free product graphs
GREGORY QUENELL 257

A discrete analogue of periodic magnetic Schrödinger operators
TOSHIKAZU SUNADA 283
Preface

Spectral geometry is, to borrow a metaphor from the contribution of Jeff Angel et. al., one of the golden threads running through contemporary mathematics. Drawing from and stimulating developments in areas of mathematics as diverse as Lie algebras, graph theory, group representation theory, and Riemannian geometry, it concerns the relationship between the spectrum of the Laplace operator or its graph-theoretic analogue, the adjacency matrix, to underlying geometric and topological data. This volume collects contributions from an AMS Joint Summer Research Conference on spectral geometry held from July 17 to 23 of 1993 at the University of Washington.

The study of spectral geometry was stimulated by Marc Kac’s celebrated lecture and article, “Can one hear the shape of a drum?” (Am. Math. Monthly 73 (1966), 1–23). If $\Omega$ is a bounded, simply connected plane domain, the eigenvalues of the Dirichlet Laplacian on $\Omega$ determine the natural frequencies of vibration of a drum with a uniform homogeneous drumhead with shape $\Omega$ under constant tension. To what extent can one invert the process and deduce the geometry of the drum from its Dirichlet eigenvalues?

Transposed to the context of Riemannian geometry, Kac’s question becomes: can one reconstruct the diffeomorphism type and metric of a Riemannian manifold $(M, g)$ from the eigenvalues of the Laplace-Beltrami operator on $M$? Respondents to this question may be loosely grouped into optimists, pessimists, graph theorists, and others, or, more precisely, into (1) those who use spectral invariants to prove compactness and finiteness theorems for isospectral manifolds, (2) those who use group theory and Lie algebra methods to construct isospectral, non-isometric Riemannian manifolds, (3) those who study associated problems for the Laplacian on graphs, exploiting techniques of graph theory and combinatorics, and (4) those who study the geometry of the spectrum in situations of singular interest or importance to other areas of mathematics.

A key development in the construction of isospectral manifolds was the beautiful trace formula of Sunada (Ann. Math. 121 (1985), 169–186). Sunada’s theorem allows one to construct pairs of isospectral manifolds which have a common, finite Riemannian covering given a simple group-theoretic condition on their respective covering groups. Hubert Pesce proves a stronger version of Sunada’s original theorem and addresses the converse question of whether all pairs of
isospectral manifolds with a common finite covering arise from a Sunada construction. Ruth Gornet constructs pairs of isospectral manifolds with a common infinite covering by a representation-theoretic method related to Sunada's technique and compares their geodesic length spectra. Not all isospectral closed manifolds have a common covering, however; Carolyn Gordon constructs examples of isospectral manifolds which differ in their local geometry.

Another important line of development in spectral geometry is the use of spectral invariants to show that spectral conditions determine a manifold up to finitely many topological or diffeomorphism types, and its metric up to a compact set. The prototypical result of this genre is the work of Osgood, Phillips, and Sarnak (J. Funct. Anal. 80 (1988), 212–234) which proved that the spectrum of the Laplacian on a compact surface constrains its metric to lie in a compact set in the $C^\infty$ topology on positive definite metrics. The contributions of Brooks and Brooks-Glezen provide, respectively, a survey of some recent work in this field and an important bootstrap theorem for proving $C^\infty$ compactness results from spectral data. Yaroslav Kuryiev gives some recent precise results on determining the metric and geometry of a manifold with boundary from its so-called boundary spectral data. Xianzhe Dai and Guofang Wei show that on certain “thin” subsets of the space of metrics on a Riemannian manifold of volume one, a finite number of eigenvalues suffice to determine the metric. On the other hand, Józef Dodziuk shows that there exist manifolds in dimension three or higher with metrics of volume one and arbitrarily large first eigenvalue.

Spectral geometry has been stimulated by the study of the Laplacian on graphs. Jeff Angel et. al. study the spectral theory of the graph Laplacian on finite analogues of the upper half-plane, with special attention to spherical functions and their ergodic properties. Koji Fujiwara proves an analogue, in the context of spectral theory on graphs, of the celebrated convergence theorem of Fukaya (Inventiones Math. 87 (1987), 517–547). Gregory Quenell relates the return generating function for a Cayley graph of a free product of groups to the first-return function of the factor groups, implying a relationship between the Green's function of the Laplacian on the product to the Green's functions of the factors.

Manifolds of negative curvature provide an especially attractive setting for spectral geometry. The quotient of hyperbolic two-dimensional space by the celebrated modular group $PSL(2, \mathbb{Z})$ provides an example of a noncompact, finite-volume surface with an infinite sequence of eigenvalues embedded in the continuous spectrum; a much-studied but as yet not completely understood question is whether such eigenvalues are “generically” absent if the metric on such a surface is varied over constant curvature metrics. Lizhen Ji and Steven Zelditch contribute to the study of this problem by showing its close relationship with multiplicity of the discrete spectrum. Yiping Mao studies conjugacy of geodesic flow on negatively curved manifolds; this work is closely related to spectral ques-
tions since geodesic flow is the "classical mechanics" for which the spectral theory of the Laplacian is the corresponding "quantum mechanics".

This relationship is further studied in the contributions of Edoh Amiran and Eugene Gutkin, who work in the context of billiards, i.e., geodesic flow on bounded planar domains. Gutkin proves an extremal property of the generating function of a twist map closely related to extremal properties of the spectrum on a bounded domain; Amiran derives a new set of spectral invariants for billiard flow by studying evolutes of the underlying bounded domain.

The contributions of Yiannis Petridis, Leonid Malozemov, and Toshikazu Sunada illustrate the rich variety of connections between spectral geometry and other branches of pure and applied mathematics. Malozemov studies the asymptotic distribution of eigenvalues for the Laplacian on certain fractal domains. Petridis shows that normalized differences of eigenvalues on generic flat tori are dense in $\mathbb{R}$, a statistical property of current interest to students of "quantum chaos". Sunada investigates a family of difference operators on graphs which provide a discrete analogue for Schrödinger operators in magnetic fields.

The editors would like to express their appreciation to all of the participants in this conference for making it such a lively and stimulating experience. We would also like to thank Carole Kohanski and Chris Harkness of the American Mathematical Society, whose diligence and competence made our administrative task, to use a favorite mathematical phrase, completely trivial. Donna Harmon, our editorial assistant at the American Mathematical Society, displayed unusual patience dealing with three editors who were in three different countries for most of the year. Finally, we appreciate the forbearance of our tour guide at a local winery, who couldn't understand at first why we all laughed when he proudly announced that this winery was one of the few in the region with its own "manifold"—in this case, a system of pipes that facilitates the many chemical reactions that turn crushed grapes into wine!

Robert Brooks
Carolyn Gordon
Peter Perry
Recent Titles in This Series

(Continued from the front of this publication)

144 Bor-Luh Lin and William B. Johnson, Editors, Banach spaces, 1993
143 Marvin Knopp and Mark Sheingorn, Editors, A tribute to Emil Grosswald: Number theory and related analysis, 1993
142 Chung-Chun Yang and Sheng Gong, Editors, Several complex variables in China, 1993
141 A. Y. Cheer and C. P. van Dam, Editors, Fluid dynamics in biology, 1993
140 Eric L. Grinberg, Editor, Geometric analysis, 1992
139 Vinay Deodhar, Editor, Kazhdan-Lusztig theory and related topics, 1992
138 Donald St. P. Richards, Editor, Hypergeometric functions on domains of positivity, Jack polynomials, and applications, 1992
137 Alexander Nagel and Edgar Lee Stout, Editors, The Madison symposium on complex analysis, 1992
136 Ron Donagi, Editor, Curves, Jacobians, and Abelian varieties, 1992
135 Peter Walters, Editor, Symbolic dynamics and its applications, 1992
134 Murray Gerstenhaber and Jim Stasheff, Editors, Deformation theory and quantum groups with applications to mathematical physics, 1992
133 Alan Adolphson, Steven Sperber, and Marvin Tretkoff, Editors, p-adic methods in number theory and algebraic geometry, 1992
132 Mark Gotay, Jerrold Marsden, and Vincent Moncrief, Editors, Mathematical aspects of classical field theory, 1992
131 L. A. Bokut', Yu. L. Ershov, and A. I. Kostrikin, Editors, Proceedings of the International Conference on Algebra Dedicated to the Memory of A. I. Mal'cev, Parts 1, 2, and 3, 1992
130 L. Fuchs, K. R. Goodearl, J. T. Stafford, and C. Vinsonhaler, Editors, Abelian groups and noncommutative rings, 1992
129 John R. Graef and Jack K. Hale, Editors, Oscillation and dynamics in delay equations, 1992
128 Ridgley Lange and Shengwang Wang, New approaches in spectral decomposition, 1992
127 Vladimir Oliker and Andrejs Treibergs, Editors, Geometry and nonlinear partial differential equations, 1992
126 R. Keith Dennis, Claudio Pedrini, and Michael R. Stein, Editors, Algebraic K-theory, commutative algebra, and algebraic geometry, 1992
125 F. Thomas Bruss, Thomas S. Ferguson, and Stephen M. Samuels, Editors, Strategies for sequential search and selection in real time, 1992
124 Darrell Haile and James Osterburg, Editors, Azumaya algebras, actions, and modules, 1992
123 Steven L. Kleiman and Anders Thorup, Editors, Enumerative algebraic geometry, 1991
121 Alex J. Feingold, Igor B. Frenkel, and John F. X. Ries, Spinor construction of vertex operator algebras, triality, and $E_8^{(1)}$, 1991
120 Robert S. Doran, Editor, Selfadjoint and nonselfadjoint operator algebras and operator theory, 1991
119 Robert A. Melter, Azriel Rosenfeld, and Prabir Bhattacharya, Editors, Vision geometry, 1991
117 Morton Brown, Editor, Continuum theory and dynamical systems, 1991

(See the AMS catalog for earlier titles)
Geometry of the Spectrum
Robert Brooks, Carolyn Gordon, and Peter Perry, Editors

Spectral geometry runs through much of contemporary mathematics, drawing on and stimulating developments in such diverse areas as Lie algebras, graph theory, group representation theory, and Riemannian geometry. The aim is to relate the spectrum of the Laplace operator or its graph-theoretic analogue, the adjacency matrix, to underlying geometric and topological data. This volume brings together papers presented at the AMS-IMS-SIAM Joint Summer Research Conference on Spectral Geometry, held in July 1993 at the University of Washington in Seattle. With contributions from some of the top experts in the field, this book presents an excellent overview of current developments in spectral geometry.