Foundational Aspects of "Non"standard Mathematics

David Ballard
Recent Titles in This Series

176 David Ballard, Foundational aspects of “non”standard mathematics, 1994
175 Paul J. Sally, Jr., Moshe Flato, James Lepowsky, Nicolai Reshetikhin, and Gregg J. Zuckerman, Editors, Mathematical aspects of conformal and topological field theories and quantum groups, 1994
174 Nancy Childress and John W. Jones, Editors, Arithmetic geometry, 1994
173 Robert Brooks, Carolyn Gordon, and Peter Perry, Editors, Geometry of the spectrum, 1994
172 Peter E. Kloeden and Kenneth J. Palmer, Editors, Chaotic numerics, 1994
171 Rüdiger Göbel, Paul Hill, and Wolfgang Liebert, Editors, Abelian group theory and related topics, 1994
170 John K. Beem and Krishan L. Duggal, Editors, Differential geometry and mathematical physics, 1994
168 Gary L. Mullen and Peter Jau-Shyong Shieh, Editors, Finite fields: Theory, applications, and algorithms, 1994
165 Barry Mazur and Glenn Stevens, Editors, p-adic monodromy and the Birch and Swinnerton-Dyer conjecture, 1994
164 Cameron Gordon, Yoav Moriah, and Bronislaw Wajnryb, Editors, Geometric topology, 1994
163 Zhong-Ci Shi and Chung-Chun Yang, Editors, Computational mathematics in China, 1994
162 Ciro Ciliberto, E. Laura Livorni, and Andrew J. Sommese, Editors, Classification of algebraic varieties, 1994
161 Paul A. Schweitzer, S. J., Steven Harder, Nathan Moreira dos Santos, and José Luis Arraut, Editors, Differential topology, foliations, and group actions, 1994
160 Niky Kamran and Peter J. Olver, Editors, Lie algebras, cohomology, and new applications to quantum mechanics, 1994
159 William J. Heinzer, Craig L. Huneyeke, and Judith D. Sally, Editors, Commutative algebra: Syzygies, multiplicities, and birational algebra, 1994
158 Eric M. Friedlander and Mark E. Mahowald, Editors, Topology and representation theory, 1994
157 Alfio Quarteroni, Jacques Periaux, Yuri A. Kuznetsov, and Olof B. Widlund, Editors, Domain decomposition methods in science and engineering, 1994
156 Steven R. Givant, The structure of relation algebras generated by relativizations, 1994
155 William B. Jacob, Tsit-Yuen Lam, and Robert O. Robson, Editors, Recent advances in real algebraic geometry and quadratic forms, 1994
154 Michael Eastwood, Joseph Wolf, and Roger Zierau, Editors, The Penrose transform and analytic cohomology in representation theory, 1993
153 Richard S. Elman, Murray M. Schacher, and V. S. Varadarajan, Editors, Linear algebraic groups and their representations, 1993
152 Christopher K. McCord, Editor, Nielsen theory and dynamical systems, 1993
151 Matatyahu Rubin, The reconstruction of trees from their automorphism groups, 1993
150 Carl-Friedrich Bödigheimer and Richard M. Hain, Editors, Mapping class groups and moduli spaces of Riemann surfaces, 1993
149 Harry Cohn, Editor, Doeblin and modern probability, 1993

(Continued in the back of this publication)
Foundational Aspects of "Non"standard Mathematics
Foundational Aspects of "Non"standard Mathematics

David Ballard
ABSTRACT. Early in the development of Nonstandard Analysis Luxemburg noted natural topologies (the “S-topologies”) to exist on the internal part of a Robinson enlargement. In this work these are generalized and used to give new, topological foundations for Nonstandard Mathematics. The resulting topological methods are then applied to construct models (implying conservativity over ZFC) of the nonstandard set theories proposed by Nelson, Hrbáček and Kawai. A simple yet nontrivial extension of a nonstandard set theory of Fletcher’s is then described and proposed as a prototype of the “ultimate” vehicle for Nonstandard Mathematics. Although the mathematical environment it presents is radically relativistic, it is never the less shown to be “safe” (conservative over ZFC) for practitioners.
Contents

Introduction 1

Part 1
Preliminaries

Chapter 1. Point Set Topology 7

Chapter 2. Model Theory 13
 2.1. a traditional view 13
 2.2. topological connections 17
 2.3. a generalization 20
 2.4. internal domains 26

Chapter 3. "Non"standard Analysis 29

Part 2
Topological Aspects

Chapter 4. Introduction 35

Chapter 5. Theory of CL Spaces 37

Chapter 6. Topological Determinacy of Local Internal Domains 41

Chapter 7. Topological Determinacy of Internal Domains 51

Part 3
Set Theoretic Aspects

Chapter 8. Introduction 63

Chapter 9. Standard Set Theory 65

Chapter 10. Current "Non"standard Set Theories 73

Chapter 11. Proofs Of Conservativity 77
Chapter 12. Critical Review With Proposal: EST

Chapter 13. Conservativity of EST

Chapter 14. Concluding Remarks

References

Index

Symbols

99

115

127

129

131

135
Foundational Aspects of “Non”standard Mathematics
David Ballard

This work proposes a major new extension of “non”standard mathematics. Addressed to a general mathematical audience, the book is intended to be philosophically provocative. The model theory on which “non”standard mathematics has been based is first reformulated within point set topology, which facilitates proofs and adds perspective. These topological techniques are then used to give new, uniform conservativity proofs for the various versions of “non”standard mathematics proposed by Nelson, Hrbáček, and Kawai. The proofs allow for sharp comparison. Addressing broader issues, Ballard then argues that what is novel in these forms of “non”standard mathematics is the introduction, however tentative, of relativity in one’s mathematical environment. This hints at the possibility of a mathematical environment which is radically relativistic. The work’s major and final feature is to present and prove conservative a version of “non”standard mathematics which, for the first time, illustrates this full radical relativism. The book is entirely self-contained, with all necessary background in point set topology, model theory, “non”standard analysis, and set theory provided in full.