Multivariable Operator Theory

A Joint Summer Research Conference on
Multivariable Operator Theory
July 10–18, 1993
University of Washington, Seattle

Raúl E. Curto
Ronald G. Douglas
Joel D. Pincus
Norberto Salinas
Editors
Recent Titles in This Series

185 Raul E. Curto, Ronald G. Douglas, Joel D. Pincus, and Norberto Salinas, Editors, Multivariable operator theory, 1995
183 William C. Connett, Marc-Olivier Gebuhrer, and Alan L. Schwartz, Editors, Applications of hypergroups and related measure algebras, 1995
182 Selman Akbulut, Editor, Real algebraic geometry and topology, 1995
181 Mila Cenkl and Haynes Miller, Editors, The Čech Centennial, 1995
180 David E. Keyes and Jinchao Xu, Editors, Domain decomposition methods in scientific and engineering computing, 1994
179 Yoshiaki Maeda, Hideki Omoro, and Alan Weinstein, Editors, Symplectic geometry and quantization, 1994
178 Helène Barcelo and Gil Kalai, Editors, Jerusalem Combinatorics '93, 1994
177 Simon Gindikin, Roe Goodman, Frederick P. Greenleaf, and Paul J. Sally, Jr., Editors, Representation theory and analysis on homogeneous spaces, 1994
176 David Ballard, Foundational aspects of "non"standard mathematics, 1994
175 Paul J. Sally, Jr., Moshe Flato, James Lepowsky, Nicolai Reshetikhin, and Gregg J. Zuckerman, Editors, Mathematical aspects of conformal and topological field theories and quantum groups, 1994
174 Nancy Childress and John W. Jones, Editors, Arithmetic geometry, 1994
173 Robert Brooks, Carolyn Gordon, and Peter Perry, Editors, Geometry of the spectrum, 1994
172 Peter E. Kloeden and Kenneth J. Palmer, Editors, Chaotic numerics, 1994
171 Rüdiger Göbel, Paul Hill, and Wolfgang Liebert, Editors, Abelian group theory and related topics, 1994
170 John K. Beem and Krishan L. Duggal, Editors, Differential geometry and mathematical physics, 1994
168 Gary L. Mullen and Peter Jau-Shyong Shiue, Editors, Finite fields: Theory, applications, and algorithms, 1994
165 Barry Mazur and Glenn Stevens, Editors, p-adic monodromy and the Birch and Swinnerton-Dyer conjecture, 1994
164 Cameron Gordon, Yoav Moriah, and Bronislaw Wajnryb, Editors, Geometric topology, 1994
163 Zhong-Ci Shi and Chung-Chun Yang, Editors, Computational mathematics in China, 1994
162 Ciro Ciliberto, E. Laura Livorni, and Andrew J. Sommese, Editors, Classification of algebraic varieties, 1994
161 Paul A. Schweitzer, S. J., Steven Hurder, Nathan Moreira dos Santos, and José Luis Arraut, Editors, Differential topology, foliations, and group actions, 1994
160 Niky Kamran and Peter J. Olver, Editors, Lie algebras, cohomology, and new applications to quantum mechanics, 1994
159 William J. Heinzer, Craig L. Huneke, and Judith D. Sally, Editors, Commutative algebra: Syzygies, multiplicities, and birational algebra, 1994

(Continued in the back of this publication)
Multivariable Operator Theory
Multivariable Operator Theory

A Joint Summer Research Conference on Multivariable Operator Theory
July 10–18, 1993
University of Washington, Seattle

Raúl E. Curto
Ronald G. Douglas
Joel D. Pincus
Norberto Salinas
Editors

American Mathematical Society
Providence, Rhode Island
The Joint Summer Research Conference on Multivariable Operator Theory was held at the University of Washington, Seattle, Washington, from July 10–18, 1993, with support from the Division of Mathematical Sciences of the National Science Foundation, Grant No. DMS-9221892.

1991 Mathematics Subject Classification. Primary 47-XX, 32-XX, 46-XX; Secondary 30-XX, 43-XX, 19-XX.
Contents

Preface ix

Explicit formulae for Taylor's functional calculus
 D. W. ALBRECHT 1

A survey of invariant Hilbert spaces of analytic functions on bounded
 symmetric domains
 JONATHAN ARAZY 7

Homogeneous operators and systems of imprimitivity
 BHASKAR BAGCHI AND GADADHAR MISRA 67

Duality between A^∞ and $A^{-\infty}$ on domains with nondegenerate corners
 DAVID E. BARRETT 77

Commutative subspace lattices, complete distributivity and approximation
 KENNETH R. DAVIDSON 89

Models and resolutions for Hilbert modules
 R. G. DOUGLAS 109

Positivity, extensions and the truncated complex moment problem
 LAWRENCE FIALKOW 133

Torsion invariants for finite von Neumann algebras
 DONGGEN GONG AND JOEL PINCUS 151

Algebraic K-theory invariants for operator theory
 JEROME KAMINKER 187

Fundamentals of harmonic analysis on domains in complex space
 STEVEN G. KRANTZ 195

Spectral picture and index invariants of commuting n-tuples of operators
 R. N. LEVY 219

Schatten class of Hankel and Toeplitz operators on the Bergman space of
 strongly pseudoconvex domains
 HUIPING LI AND DANIEL H. LUECKING 237

Operator equations with elementary operators
 MARTIN MATHIEU 259
Membership in the class $A^{(2)}_{N_0}(\mathcal{H})$

 ALFREDO OCTAVIO

Higher order Hankel forms

 JAAK PEEtre AND RICHARD ROCHBERG

Real valued spectral flow

 VICUMPRIYA S. PERERA

Abstract $\bar{\partial}$-resolutions for several commuting operators

 MIHAI PUTINAR

Toeplitz C^*-algebras and several complex variables

 NORBERTO SALINAS

Positivity conditions and standard models for commuting multioperators

 F.-H. VASILESCU

Trace formulas and completely unitary invariants for some k-tuples of commuting operators

 DAOXING XIA
Preface

This volume consists of a collection of papers presented at the 1993 Summer Research Conference on Multivariable Operator Theory, held at the University of Washington in Seattle, under the auspices of the American Mathematical Society.

The articles represent contributions to a variety of areas and topics, which may be viewed as forming an emerging new subject, involving the study of geometric rather than topological invariants associated with the general theme of operator theory in several variables.

Beginning with J. L. Taylor's discovery in 1970 of the right notion of joint spectrum and analytic functional calculus for commuting families of Banach space operators, a number of significant developments have taken place. For instance, a Bochner-Martinelli formula has been generalized to commuting n-tuples in arbitrary C^*-algebras; various forms of the multivariable index theorem have been proved using non-commutative differential geometry and algebraic geometry; and systems of Toeplitz and Hankel operators on Reinhardt domains, bounded symmetric domains, and domains of finite type have been substantially understood from the spectral and algebraic viewpoints, including the discovery of concrete Toeplitz operators with irrational index.

These developments have been applied successfully to various types of quantizations, and functional spaces on Cartan domains and on pseudoconvex domains with smooth boundary have been thoroughly studied. A generalization of the Berger-Shaw formula to several variables has been proved; and connections with the local multiplicative Lefshetz numbers, analytic torsion, and curvature relations of canonically associated hermitian vector bundles have been established. Moreover, a sophisticated machinery of functional homological algebra suitable for the study of multivariable phenomena has been developed, and a rich theory for invariant pseudodifferential operators on domains with transverse symmetry has been produced.

Much of multivariable operator theory involves the interaction between the subspace geometry of defect spaces and algebraic K-theory. For one example, a multivariable index theorem corresponding to commuting pairs of elements with finite defect $A, B \in \text{End}(H)$, where H is a vector space over an arbitrary field F, has emerged in connection with the Quillen algebraic K-theory. The
joint torsion $\tau(A, B; \mathcal{H})$ is a multiplicative Euler characteristic defined solely in terms of the homology of the Koszul complex $K_*(A, B, H)$. It has been found to be the obstruction in the homotopy lifting problem from the classifying space $BGL(\text{End}(H))^+ \to BGL(\text{End}(H)/F)^+$, where F is the finite rank ideal; for it has been shown that $\tau(A, B; \mathcal{H}) = \partial\{A + F, B + F\}$, where $\{A + F, B + F\}$ is the Steinberg element in $BGL(\text{End}(H)/F)^+$.

On a different direction, Calabi-like rigidity phenomena for analytically invariant subspaces of the Hardy and Bergman spaces have been discovered, and sheaf models for subnormal n-tuples have been formulated, which have led to a substantial understanding of their spectral properties. Results from polynomial convexity have been used to solve intriguing problems on joint quasitriangularity, and the polynomially hyponormal conjecture for single operators has been settled using ideas from joint hyponormality.

As probably expected during the early stages of a new subject, the recent years have seen the rise of many new approaches (all quite different) to multivariable operator theory, certainly connected, but with relationships not well understood. The subject has developed in several directions and with the aid of many and varied techniques, and a good number of the advances have been made through cross pollination among different areas of mathematics.

The principal goal of the conference was to provide a forum for the discussion of the actual connections among the various approaches, which one hopes will allow researchers to combine their efforts in finding an understanding of the above mentioned relationships and new directions for future research. These proceedings represent the products of those discussions.

The Editors
December 1994
Recent Titles in This Series

(Continued from the front of this publication)

158 Eric M. Friedlander and Mark E. Mahowald, Editors, Topology and representation theory, 1994
157 Alfio Quarteroni, Jacques Periaux, Yuri A. Kuznetsov, and Olof B. Widlund, Editors, Domain decomposition methods in science and engineering, 1994
156 Steven R. Givant, The structure of relation algebras generated by relativizations, 1994
155 William B. Jacob, Tsit-Yuen Lam, and Robert O. Robson, Editors, Recent advances in real algebraic geometry and quadratic forms, 1994
154 Michael Eastwood, Joseph Wolf, and Roger Zierau, Editors, The Penrose transform and analytic cohomology in representation theory, 1993
153 Richard S. Elman, Murray M. Schacher, and V. S. Varadarajan, Editors, Linear algebraic groups and their representations, 1993
152 Christopher K. McCord, Editor, Nielsen theory and dynamical systems, 1993
151 Matatyahu Rubin, The reconstruction of trees from their automorphism groups, 1993
150 Carl-Friedrich Bödigheimer and Richard M. Hain, Editors, Mapping class groups and moduli spaces of Riemann surfaces, 1993
149 Harry Cohn, Editor, Doeblin and modern probability, 1993
148 Jeffrey Fox and Peter Haskell, Editors, Index theory and operator algebras, 1993
147 Neil Robertson and Paul Seymour, Editors, Graph structure theory, 1993
146 Martin C. Tangora, Editor, Algebraic topology, 1993
145 Jeffrey Adams, Rebecca Herb, Stephen Kudla, Jian-Shu Li, Ron Lipsman, and Jonathan Rosenberg, Editors, Representation theory of groups and algebras, 1993
144 Bor-Luh Lin and William B. Johnson, Editors, Banach spaces, 1993
143 Marvin Knopp and Mark Sheingorn, Editors, A tribute to Emil Grosswald: Number theory and related analysis, 1993
142 Chung-Chun Yang and Sheng Gong, Editors, Several complex variables in China, 1993
141 A. Y. Cheer and C. P. van Dam, Editors, Fluid dynamics in biology, 1993
140 Eric L. Grinberg, Editor, Geometric analysis, 1992
139 Vinay Deodhar, Editor, Kazhdan-Lusztig theory and related topics, 1992
138 Donald St. P. Richards, Editor, Hypergeometric functions on domains of positivity, Jack polynomials, and applications, 1992
137 Alexander Nagel and Edgar Lee Stout, Editors, The Madison symposium on complex analysis, 1992
136 Ron Donagi, Editor, Curves, Jacobians, and Abelian varieties, 1992
135 Peter Walters, Editor, Symbolic dynamics and its applications, 1992
134 Murray Gerstenhaber and Jim Stasheff, Editors, Deformation theory and quantum groups with applications to mathematical physics, 1992
133 Alan Adolphson, Steven Sperber, and Marvin Tretkoff, Editors, p-adic methods in number theory and algebraic geometry, 1992
132 Mark Gotay, Jerrold Marsden, and Vincent Moncrief, Editors, Mathematical aspects of classical field theory, 1992
131 L. A. Bokut', Yu. L. Ershov, and A. I. Kostrikin, Editors, Proceedings of the International Conference on Algebra Dedicated to the Memory of A. I. Mal'cev, Parts 1, 2, and 3, 1992
130 L. Fuchs, K. R. Goodearl, J. T. Stafford, and C. Vinsonhaler, Editors, Abelian groups and noncommutative rings, 1992
129 John R. Graef and Jack K. Hale, Editors, Oscillation and dynamics in delay equations, 1992
128 Ridgley Lange and Shengwang Wang, New approaches in spectral decomposition, 1992

(See the AMS catalog for earlier titles)
Errata

The page numbers for the entries on the second page of the Table of Contents were inadvertently omitted. Here is the corrected page.

viii CONTENTS

Membership in the class $A_{K_0}^{(2)}(H)$
ALFREDO OCTAVIO 273

Higher order Hankel forms
JAAK PEETRE AND RICHARD ROCHBERG 283

Real valued spectral flow
VICUMPRIYA S. PERERA 307

Abstract $\bar{\partial}$-resolutions for several commuting operators
MIHAI PUTINAR 319

Toeplitz C^*-algebras and several complex variables
NORBERTO SALINAS 339

Positivity conditions and standard models for commuting multioperators
F.-H. VASELIEV 347

Trace formulas and completely unitary invariants for some k-tuples of commuting operators
DAOXING XIA 367
Multivariable Operator Theory
Raúl E. Curto, Ronald G. Douglas, Joel D. Pincus, and Norberto Salinas, Editors

This volume contains a collection of papers presented at the Summer Research Conference on Multivariable Operator Theory, held in July 1993 at the University of Washington in Seattle. The articles contain contributions to a variety of areas and topics which may be viewed as forming an emerging new subject. This subject involves the study of geometric rather than topological invariants associated with the general theme of operator theory in several variables. Developments have occurred in several different directions, with the aid of a variety of techniques, and many advances have been made through cross-pollination among different areas of mathematics. The goal of the conference, and of this volume, is to spur discussion of the connections among the various approaches and new directions for research.