AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Recent Developments in the Inverse Galois Problem
About this Title
Michael D. Fried, Shreeram S. Abhyankar, Walter Feit, Yasutaka Ihara and Helmut Voelklein, Editors
Publication: Contemporary Mathematics
Publication Year:
1995; Volume 186
ISBNs: 978-0-8218-0299-1 (print); 978-0-8218-7777-7 (online)
DOI: https://doi.org/10.1090/conm/186
MathSciNet review: 1352262
Table of Contents
Download chapters as PDF
Front/Back Matter
Part A: Explicit Quotients of $G_{\mathbb {Q}}$ and $G_{\bar {\mathbb {F}}(t)}$
- Teresa Crespo – Explicit Galois realization of $C_{16}$-extensions of $A_n$ and $S_n$ [MR 1352263]
- Michael D. Fried – Review of: Topics in Galois theory [Jones and Bartlett, Boston, MA, 1992; MR1162313 (94d:12006)] by J.-P. Serre [MR 1352264]
- B. H. Matzat – Parametric solutions of embedding problems [MR 1352265]
- Amadeu Reverter and Núria Vila – Some projective linear groups over finite fields as Galois groups over $\textbf {Q}$ [MR 1352266]
- Steven Liedahl and Jack Sonn – $K$-admissibility of metacyclic $2$-groups [MR 1352267]
- John R. Swallow – Embedding problems and the $C_{16}\to C_8$ obstruction [MR 1352268]
- Helmut Völklein – Cyclic covers of $\textbf {P}^1$ and Galois action on their division points [MR 1352269]
Part B: Moduli Spaces and the Structure of $G_{\mathbb {Q}}$
- Michael D. Fried – Introduction to modular towers: generalizing dihedral group–modular curve connections [MR 1352270]
- Yasutaka Ihara and Makoto Matsumoto – On Galois actions on profinite completions of braid groups [MR 1352271]
- Makoto Matsumoto – On the Galois image in the derivation algebra of $\pi _1$ of the projective line minus three points [MR 1352272]
- Pierre Dèbes – Covers of $\textbf {P}^1$ over the $p$-adics [MR 1352273]
- Bruno Deschamps – Existence de points $p$-adiques pour tout $p$ sur un espace de Hurwitz [MR 1352274]
- Eric Dew – Stable models [MR 1352275]
- Qing Liu – Tout groupe fini est un groupe de Galois sur $\textbf {Q}_p(T)$, d’après Harbater [MR 1352276]
- Wolfgang K. Seiler – Specializations of coverings and their Galois groups [MR 1352277]
- Lan Wang – Rational points and canonical heights on $K3$-surfaces in $\textbf {P}^1\times \textbf {P}^1\times \textbf {P}^1$ [MR 1352278]
Part D: Group Theory and Geometric Monodromy Groups
- Shreeram S. Abhyankar – Mathieu group coverings and linear group coverings [MR 1352279]
- Paul Feit – Fundamental groups for arbitrary categories [MR 1352280]
- Robert M. Guralnick and Michael G. Neubauer – Monodromy groups of branched coverings: the generic case [MR 1352281]
- David Harbater – Fundamental groups and embedding problems in characteristic $p$ [MR 1352282]
- Moshe Jarden – On free profinite groups of uncountable rank [MR 1352283]
- Peter Müller – Primitive monodromy groups of polynomials [MR 1352284]