# AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution

# $SL(2)$ Representations of Finitely Presented Groups

### About this Title

**G. W. Brumfiel** and **H. M. Hilden**

Publication: Contemporary Mathematics

Publication Year:
1995; Volume 187

ISBNs: 978-0-8218-0416-2 (print); 978-0-8218-7778-4 (online)

DOI: https://doi.org/10.1090/conm/187

MathSciNet review: 1339764

### Table of Contents

**Download chapters as PDF**

**Front/Back Matter**

**Chapters**

- Introduction
- Chapter 1. The Definition and Some Basic Properties of the Algebra $H[\pi ]$
- Chapter 2. ADecomposition of the Algebra $H[\pi ]$ when $\frac {1}{2}\in k$
- Chapter 3. Structure of the Algebra $H[\pi ]$ for Two-Generator Groups
- Chapter 4. Absolutely Irreducible $SL(2)$ Representations of Two-Generator Groups
- Chapter 5. Further Identities in the Algebra $H[\pi ]$ when $\frac {1}{2}\in k$
- Chapter 6. Structure of $H^{+}[\pi _{n}]$ for Free Groups $\pi _{n}$
- Chapter 7. Quaternion Algebra Localizations of $H[\pi ]$ and Absolutely Irreducible $SL(2)$ Representations
- Chapter 8. Algebro-Geometric Interpretation of SL(2) Representations of Groups
- Chapter 9. The Universal Matrix Representation of the Algebra $H[\pi ]$
- Chapter 10. Some Knot Invariants Derived from the Algebra $H[\pi ]$
- Appendix A. Addenda
- Appendix B. Afterword
- Bibliography