Selected Titles in This Series

230 Ezra Getzler and Mikhail Kapranov, Editors, Higher category theory, 1998
228 Liming Ge, Huaxin Lin, Zhong-Jin Ruan, Dianzhou Zhang, and Shuang Zhang, Editors, Operator algebras and operator theory, 1999
227 John McCleary, Editor, Higher homotopy structures in topology and mathematical physics, 1999
226 Luis A. Caffarelli and Mario Milman, Editors, Monge Ampère equation: Applications to geometry and optimization, 1999
225 Ronald C. Mullin and Gary L. Mullen, Editors, Finite fields: Theory, applications, and algorithms, 1999
224 Sang Geun Hahn, Hyo Chul Myung, and Efim Zelmanov, Editors, Recent progress in algebra, 1999
223 Bernard Chazelle, Jacob E. Goodman, and Richard Pollack, Editors, Advances in discrete and computational geometry, 1999
222 Kang-Tae Kim and Steven G. Krantz, Editors, Complex geometric analysis in Pohang, 1999
221 J. Robert Dorroh, Gisèle Ruiz Goldstein, Jerome A. Goldstein, and Michael Mudi Tom, Editors, Applied analysis, 1999
220 Mark Mahowald and Stewart Priddy, Editors, Homotopy theory via algebraic geometry and group representations, 1998
219 Marc Henneaux, Joseph Krasil’shchik, and Alexandre Vinogradov, Editors, Secondary calculus and cohomological physics, 1998
218 Jan Mandel, Charbel Farhat, and Xiao-Chuan Cai, Editors, Domain decomposition methods 10, 1998
216 Akram Aldroubi and EnBing Lin, Editors, Wavelets, multiwavelets, and their applications, 1998
214 Lewis A. Coburn and Marc A. Rieffel, Editors, Perspectives on quantization, 1998
212 E. Ramírez de Arellano, N. Salinas, M. V. Shapiro, and N. L. Vasilevski, Editors, Operator theory for complex and hypercomplex analysis, 1998
211 Józef Dodziuk and Linda Keen, Editors, Lipa’s legacy: Proceedings from the Bers Colloquium, 1997
210 V. Kumar Murty and Michel Waldschmidt, Editors, Number theory, 1998
209 Steven Cox and Irena Lasiecka, Editors, Optimization methods in partial differential equations, 1997
207 Yujiro Kawamata and Vyacheslav V. Shokurov, Editors, Birational algebraic geometry: A conference on algebraic geometry in memory of Wei-Liang Chow (1911–1995), 1997
206 Adam Korányi, Editor, Harmonic functions on trees and buildings, 1997

(See the AMS catalog for earlier titles)
Higher Category Theory
Higher Category Theory

Workshop on Higher Category Theory and Physics
March 28–30, 1997
Northwestern University
Evanston, IL

Ezra Getzler
Mikhail Kapranov
Editors
This volume is the record of a Workshop on Higher Category Theory and Physics, which took place at Northwestern University, Evanston, IL, on March 28–30, 1997.

1991 Mathematics Subject Classification. Primary 18-06, 18D05, 18G50.
Contents

Preface ix

Categorification
 JOHN C. BAEZ AND JAMES DOLAN 1

Computads for finitary monads on globular sets
 M. A. BATANIN 37

Braided n-categories and Σ-structures
 LAWRENCE BREEN 59

Categories of vector bundles and Yang-Mills equations
 JEAN-LUC BRYLINSKI 83

The role of Michael Batanin’s monoidal globular categories
 ROSS STREET 99

Braided deformations of monoidal categories and Vassiliev invariants
 DAVID N. YETTER 117
Preface

The concept of categories, introduced by Eilenberg and Mac Lane in the 1940's, has replaced set theory as the foundation in a large part of mathematics. One reason is that more information is retained if one considers objects in categories rather than their underlying sets. To put it more concisely: look at a set through a magnifying glass and you see a category. The passage from sets to categories involves a change in point of view: in most cases, it is neither meaningful nor necessary to speak about two objects of a category being equal\(^1\); much better to say that they are isomorphic, and specify the isomorphism.

Soon after the introduction of categories, it was realized that the Hom-sets in a category are frequently in their turn categories, and so on. Iterating \(n\) times, one obtains the theory of \(n\)-categories. A 0-category is just a set, a 1-category is the same as an ordinary category and an example of a 2-category is provided by the “category” of all 1-categories. However, it turned out to be very difficult to give an “invariant” definition of an \(n\)-category (i.e. a definition which at no stage involves the concept of equality of two objects of an ordinary category). This problem was explicitly stated by Grothendieck in his unpublished memoir “Pursuing stacks” (1986). A naive attempt to write down a definition stage by stage quickly leads to seemingly unsurmountable combinatorial difficulties.

In recent years, several definition of (weak) \(n\)-categories have been proposed [1,2,3,4]. One reason for increased interest in the subject was the discovery of applications in low-dimensional topology and mathematical physics, where monoidal categories (2-categories with one object) have been used for over a decade, and where the recent work has led to the consideration of higher categorical structures.

This volume is the record of the workshop on higher category theory and mathematical physics held at Northwestern University in March 1997 with the aim of making some of these exciting new developments in category theory better known outside the community of experts, as they deserve to be. We especially tried to solicit presentations in the style “Higher categories for the working mathematician.” We hope that the present collection of papers will be useful as an introduction to a subject which is intrinsically difficult but holds great promise for the future development of mathematics.

Ezra Getzler, Misha Kapranov
October 1998, Evanston

\(^1\)Compare to these maxims of Wittgenstein: “To say of two things that they are identical is nonsense and to say that one thing is identical with itself is to say nothing at all (…) The identity-sign, therefore, is not an essential constituent of conceptual notation” ([5], §5.53).
Bibliography

