Continued Fractions: From Analytic Number Theory to Constructive Approximation

A Volume in Honor of L. J. Lange

May 20-23, 1998
University of Missouri—Columbia

Bruce C. Berndt
Fritz Gesztesy
Editors
Selected Titles in This Series

236 Bruce C. Berndt and Fritz Gesztesy, Editors, Continued fractions: From analytic number theory to constructive approximation, 1999
235 Walter A. Carnielli and Itala M. L. D'Ottaviano, Editors, Advances in contemporary logic and computer science, 1999
234 Theodore P. Hill and Christian Houdré, Editors, Advances in stochastic inequalities, 1999
233 Hanna Nencka, Editor, Low dimensional topology, 1999
232 Krzysztof Jarosz, Editor, Function spaces, 1999
231 Michael Farber, Wolfgang Lück, and Shmuel Weinberger, Editors, Tel Aviv topology conference: Rothenberg Festschrift, 1999
230 Ezra Getzler and Mikhail Kapranov, Editors, Higher category theory, 1998
228 Liming Ge, Huaxin Lin, Zhong-Jin Ruan, Dianzhou Zhang, and Shuang Zhang, Editors, Operator algebras and operator theory, 1999
227 John McCleary, Editor, Higher homotopy structures in topology and mathematical physics, 1999
226 Luis A. Caffarelli and Mario Milman, Editors, Monge Ampère equation: Applications to geometry and optimization, 1999
225 Ronald C. Mullin and Gary L. Mullen, Editors, Finite fields: Theory, applications, and algorithms, 1999
224 Sang Geun Hahn, Hyo Chul Myung, and Efim Zelmanov, Editors, Recent progress in algebra, 1999
223 Bernard Chazelle, Jacob E. Goodman, and Richard Pollack, Editors, Advances in discrete and computational geometry, 1999
222 Kang-Tae Kim and Steven G. Krantz, Editors, Complex geometric analysis in Pohang, 1999
221 J. Robert Dorroh, Gisèle Ruiz Goldstein, Jerome A. Goldstein, and Michael Mudi Tom, Editors, Applied analysis, 1999
220 Mark Mahowald and Stewart Priddy, Editors, Homotopy theory via algebraic geometry and group representations, 1998
219 Marc Henneaux, Joseph Krasil’schik, and Alexandre Vinogradov, Editors, Secondary calculus and cohomological physics, 1998
218 Jan Mandel, Charbel Farhat, and Xiao-Chuan Cai, Editors, Domain decomposition methods 10, 1998
216 Akram Aldroubi and EnBing Lin, Editors, Wavelets, multiwavelets, and their applications, 1998
214 Lewis A. Coburn and Marc A. Rieffel, Editors, Perspectives on quantization, 1998
212 E. Ramírez de Arellano, N. Salinas, M. V. Shapiro, and N. L. Vasilevski, Editors, Operator theory for complex and hypercomplex analysis, 1998
211 Józef Dodziuk and Linda Keen, Editors, Lipa’s legacy: Proceedings from the Bers Colloquium, 1997
210 V. Kumar Murty and Michel Waldschmidt, Editors, Number theory, 1998

(Continued in the back of this publication)
Continued Fractions:
From Analytic Number Theory
to Constructive Approximation

A Volume in Honor of L. J. Lange
Continued Fractions: From Analytic Number Theory to Constructive Approximation

A Volume in Honor of L. J. Lange

Continued Fractions: From Analytic Number Theory to Constructive Approximation
May 20–23, 1998
University of Missouri—Columbia

Bruce C. Berndt
Fritz Gesztesy
Editors

American Mathematical Society
Providence, Rhode Island
This volume contains the contributions to the international conference "Continued Fractions: From Analytic Number Theory to Constructive Approximation", held at the University of Missouri-Columbia on May 20-23, 1998.

1991 Mathematics Subject Classification. Primary 42C05, 30B70, 30E05, 40A15; Secondary 11–XX, 33–XX, 41–XX.
Contents

Preface and Dedication ... ix
List of Participants .. xvi

Continued fractions and orthogonal polynomials
 R. Askey ... 1

The problems submitted by Ramanujan to the Journal of the Indian Mathematical Society
 B. C. Berndt, Y.-S. Choi, and S.-Y. Kang 15

Some examples of moment preserving approximation
 B. Bojanov and A. Sri Ranga ... 57

Relations between certain symmetric strong Stieltjes distributions
 C. F. Bracciali ... 71

Estimates of the rate of convergence for certain quadrature formulas on the half-line
 A. Bultheel, C. Díaz-Mendoza, P. González-Vera, and R. Orive 85

Wavelets by orthogonal rational kernels
 A. Bultheel and P. González-Vera 101

On the explicit evaluations of the Rogers-Ramanujan continued fraction
 H. H. Chan and V. Tan .. 127

Absence of phase transitions in modified two-component plasmas: The analytic theory of continued fractions in statistical mechanics
 D. Chelst ... 137

Some continued fractions related to elliptic functions
 M. E. H. Ismail and D. R. Masson 149

Asymptotics of Stieltjes continued fraction coefficients and applications to Whittaker functions
 W. B. Jones and G. Shen .. 167

A generalization of Van Vleck's theorem and more on complex continued fractions
 L. J. Lange .. 179
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convergence of interpolating Laurent polynomials on an annulus</td>
<td>X. Li</td>
<td>193</td>
</tr>
<tr>
<td>Convergence criteria for continued fractions $K(a_n/1)$ based on value sets</td>
<td>L. Lorentzen</td>
<td>205</td>
</tr>
<tr>
<td>Strong Stieltjes moment problems</td>
<td>O. Njåstad</td>
<td>257</td>
</tr>
<tr>
<td>Weak asymptotics of orthogonal polynomials on the support of the measure of orthogonality and considerations on functions of the second kind</td>
<td>F. Peherstorfer and R. Steinbauer</td>
<td>277</td>
</tr>
<tr>
<td>Trees of approximation constants</td>
<td>S. Perrine</td>
<td>297</td>
</tr>
<tr>
<td>Continued fractions and Schrödinger evolution</td>
<td>I. Rodnianski</td>
<td>311</td>
</tr>
<tr>
<td>Multiple orthogonal polynomials, irrationality and transcendence</td>
<td>W. Van Assche</td>
<td>325</td>
</tr>
<tr>
<td>Reduction of continued fractions of formal power series</td>
<td>A. J. van der Poorten</td>
<td>343</td>
</tr>
<tr>
<td>Some observations in frequency analysis</td>
<td>H. Waadeland</td>
<td>357</td>
</tr>
<tr>
<td>Some properties of Hermite–Padé approximants to e^z</td>
<td>F. Wielonsky</td>
<td>369</td>
</tr>
</tbody>
</table>
Preface and Dedication

This volume contains the refereed contributions of the international conference “Continued Fractions: From Analytic Number Theory to Constructive Approximation”, held at the University of Missouri–Columbia on May 20–23, 1998. The meeting also celebrated Jerry Lange’s seventieth birthday and marked his retirement from the University of Missouri. It is a great pleasure to dedicate this volume to Jerry in recognition of his distinguished service and long-lasting impact on the Mathematics Department at MU.

In spite of their long tradition, continued fractions (whose general definition appears to go back to the book “Liber Abaci” of Leonardo of Pisa, also called Fibonacci, written around 1202) remain an active area of research in a large number of fields ranging from pure mathematics to mathematical physics and approximation theory. The principal purpose of this conference was to focus on continued fractions as a common interdisciplinary theme bridging gaps between these fields. As a consequence, the lectures at this conference and the corresponding contributions to this volume reflect the wide range of applicability of continued fractions in mathematics and the applied sciences.

More specifically, recurrence relations for orthogonal polynomials and their relations to continued fractions, appealing to a well-known theorem of Markoff, are studied in Askey’s contribution. Orthogonal Laurent polynomials and questions of (in)determinacy of the strong Stieltjes moment problem are considered by Njastad. Strong Stieltjes distributions, orthogonal Laurent polynomials and related continued fractions appear in Bracciali’s article. Generating functions of orthogonal Laurent polynomials, associated kernel polynomials, and moment-preserving approximations are treated by Bojanov and Sri Ranga. Convergence properties of Laurent polynomials that interpolate functions on the boundary of a circular annulus are investigated by Li. Compact perturbations of reflection coefficients and the resulting weak asymptotics of orthogonal polynomials on the support of the measure of orthogonality and asymptotics of the corresponding functions of the second kind are studied by Peherstorfer and Steinbauer. Convergence of Stieltjes continued fractions and their asymptotic speed of convergence as a result of analyzing the asymptotic behavior of the corresponding expansion coefficients, applicable to Whittaker functions, are considered by Jones and Shen. Various convergence theorems including a new and constructive proof of an extension of Van Vleck’s convergence theorem for continued fractions, including a sharp truncation error formula, are derived in Lange’s contribution. A very extensive treatment of convergence criteria, including substantial progress in proving a conjecture by Lorentzen and Ruscheweyh, as well as a simplified approach to Cordova’s extension of the classical parabola theorem, are provided by Lorentzen.
PREFACE AND DEDICATION

A thorough survey of all 58 problems submitted by Ramanujan to the *Journal of the Indian Mathematical Society* between 1911 and 1919, detailing their subsequent influence on various directions of research since 1927, is provided by Berndt, Choi, and Kang. Recent progress made in explicit evaluations of the Rogers-Ramanujan continued fractions using modular equations and class invariants, are discussed by Chan and Tan. Continued fractions of Stieltjes and Rogers associated with elliptic functions and solutions of the corresponding difference equations are studied by Ismail and Masson.

A sequence of approximation constants converging towards $1/3$ by lower values associated with the Diophantine equation $x^2 + y^2 + z^2 = 3xyz + 2x$ is developed by Perrine. A principle relating the reduction mod p of a continued fraction expansion to the original expansion in characteristic zero and illustrations involving classical Abelian integrals and hyperelliptic curves are discussed by van der Poorten. Multiple orthogonal polynomials, a notion closely related to Hermite-Padé rational approximation of a system of Markoff functions, and constructive proofs of the irrationality of $\zeta(3)$ and transcendence of certain real numbers (applicable to e) are presented by Van Assche. Convergence questions and the location of zeros of Hermite-Padé approximants to e^z are considered by Wielonsky.

Orthogonal reproducing rational kernels are used to construct rational wavelets on the unit circle with respect to arbitrary positive measures by Bultheel and González-Vera. The rate of convergence for n-point Gauss-type quadrature integrals on the half-line is estimated by Bultheel, Díaz-Mendoza, González-Vera, and Orive. A new approach to frequency analysis for trigonometric signals, circumventing the associated problem of vanishing Töplitz determinants, is presented by Waadeland.

The absence of pressure-dependent phase transitions in modified two-component plasmas, extending Lenard’s original approach based on continued fractions, is shown by Chelst. Spatial regularity properties of the fundamental solution (propagator) of the time-dependent Schrödinger equation on the circle in the presence of a complex-valued potential in terms of Besov spaces, depending on arithmetic properties of the time parameter, are derived by Rodnianski.

Naturally, this event required support by a number of individuals. We thank the remaining organizing committee members, Nigel Kalton, Igor Verbitsky, and especially Mark Ashbaugh for their assistance in preparing this conference. Special thanks are due to all staff members at the Mathematics Department, especially to Bridget Kelley and some of our graduate students for their great efforts on behalf of this conference. Moreover, we also thank Helge Holden and Karl Unterkofler for their help over the past two years. Holden generously shared his considerable experience in organizing events of this type; Unterkofler handled all technical aspects in producing this proceedings volume and provided invaluable assistance to several contributors and the editors.

Finally, we gratefully acknowledge financial support for this conference from a variety of sources, including the US National Science Foundation (NSF DMS 9729700), the University of Missouri Research Board (RB98-012), The College of Arts & Science, The Office of Research, and the Department of Mathematics at MU. Special thanks are due to Elias Saab, who early on enthusiastically supported the idea of such an event and, in his position as Chair of the Mathematics Department, initially guaranteed a major portion of funding for this project.
L. J. Lange
Leo Jerome Lange (Jerry) was the first of five children born to Leo and Clara Lange on August 29, 1928, in New Rockford, North Dakota. For most of his boyhood years, Jerry was raised on a farm about eleven miles from New Rockford. This farm was homesteaded by his grandparents, and it was the birthplace of his father. There he learned the value of hard work and experienced some of the adversity brought on by the aftermath of the Great Depression and the dust bowl era of the thirties.

Jerry's first eight years in school were spent in a one-room country school house. He was fortunate to have several inspiring teachers in this school and recalls reading most of the books (including the encyclopedias) in its limited library.

Jerry spent his four high school years, 1942-1946, at Sacred Heart Academy (SHA) (now Schanley High School) in Fargo, North Dakota. To continue to attend this premier high school (about 175 miles from the family home) he lived and worked in a hospital in Fargo during his last three years at the school. To this day he much appreciates the education he received from excellent dedicated teachers at SHA. He has an especially fond memory of a nun who had the uncanny ability of getting teen-age boys enthused about presenting proofs of propositions on the blackboard.

Upon graduation from high school at the rank of Salutatorian of his class, Jerry now faced the problems of how to finance his desired college education and what to do about the fact that he was about to be caught up in the post World War II military draft. The possible educational benefits of the WW II GI Bill influenced him to enlist in the US Army on September 30, 1946 for an eighteen month term. He served as a medic for more than a year in Berlin, Germany in the 3rd. Battalion, 16th Infantry Regiment, of the 1st. Division, and obtained the final rank of Corporal.

Through the benefits of the GI Bill, by working in the summer, and with some extra “travel money” from his parents, Jerry was able to attend Regis College (now Regis University) in Denver, Colorado. He started his training there in the fall of 1948 and eventually decided to major in Mathematics and minor in Physics and Philosophy. He is very appreciative of the challenges that were presented to him and the attitudes that were fostered in him by his professors at Regis. Jerry received the Most Outstanding Senior Award from Regis, and graduated with a BS degree in the spring of 1952.

Jerry had been encouraged by his mathematics teachers at Regis to pursue an advanced degree in mathematics, and in August of 1952 he went to the University of Colorado-Boulder (CU) to seek admission as a graduate student in mathematics. Burton W. Jones, who was then Chair of the Mathematics Department at CU,
accepted him immediately. Jerry began his teaching career in the winter semester of 1953 when he received a Teaching Assistantship in Mathematics.

In June of 1955, he married Geraldine Ryan who was teaching music in the Denver public school system. They lived in Denver and Jerry commuted to Boulder daily to continue his study and teaching at CU. By the end of the summer of 1955 he had completed his Masters Thesis on “Some Problems in Interpolation” and all of the requirements for the MA degree. His Masters Thesis advisor was Kurt A. Hirsch of the University of London, and the second reader for the work was S. Chowla.

In 1956 Geraldine and Jerry had started a family, so she chose to relinquish her teaching position in Denver. Jerry accepted a classified position as a mathematician at the National Bureau of Standards, Boulder Laboratories (NBS) in July of 1956. His position at NBS was located in the Low Frequency and Very Low Frequency Section of the Radio Communication and Systems Division. For the next two years he continued to take graduate courses at CU while working full-time at NBS, making up the time he spent in class by working on weekends. Jerry did most of the analyses and prepared most of the technical materials that were used by the US delegation to the International Technical Discussions on Detection of Nuclear Tests held in Geneva, Switzerland in the summer of 1958. For his work at NBS, Jerry received two merit awards from the United States Department of Commerce, one in 1959 and one in 1960.

In the fall of 1958, through his Ph.D. advisor Wolfgang J. Thron, Jerry was awarded a two-year AFOSR grant for graduate research. This allowed him to convert his position at NBS to half-time, so he could spend his mornings at CU attending classes and doing research for his doctoral thesis. Jerry was the first of Thron’s many Ph.D. students, and he was awarded the Ph.D. degree from CU in the summer of 1960. His doctoral thesis consists of three parts and is entitled “Divergence, Convergence, and Speed of Convergence of Continued Fractions 1 + K(\(a_n/1\))”. The Convergence part appears in his joint 1960 publication with Thron in Mathematische Zeitschrift, and the other two parts have played significant roles in some of Jerry’s later publications. Upon receiving the Ph.D., he was offered a large increase in civil service rank if he would continue his work at NBS. However, he chose to resign at NBS in August, 1960 so that he could accept an academic position at the University of Missouri-Columbia (MU).

Jerry joined the faculty of the Department of Mathematics at MU on September 1, 1960. He has spent his entire academic career at this institution. He served as Chair of the Department during the years 1988-91 and during the summers of 1966, 1968, and 1969. He also served in the position of Associate Chair during the years 1968-69, 1977-78, and 1978-79. His teaching record shows that he taught in the neighborhood of one hundred and ninety classes at MU, most of which were at the calculus level and beyond. He was a pioneer in the use of the computer as a teaching aid in calculus, and for three decades he was the principal creator, teacher, and promoter of complex analysis courses in the Department. Jerry gave unselfishly of his time to numerous important Departmental and Campus personnel, academic, and policy committees. He is especially proud of his role in the Departmental Planning Committee that had much to do with charting the path of the Department in the last decade.
Jerry’s principal field of research has been the analytic theory of continued fractions. He is an internationally recognized expert on the convergence of continued fractions and their applications to function representation in the complex domain. In each of his papers on continued fractions he has solved one or more, usually long-standing, problems in the field. Space limitations prohibit a discussion of Jerry’s research in detail here, but the majority of his results are fundamental, have wide-reaching significance, and are cited often by other researchers. His Uniform Twin Limaçon Theorem for continued fractions $K(a_n/1)$, which he proved in his 1966 paper in the Illinois Journal of Mathematics, has turned out to be one of the most significant results in convergence region theory. Recently, in the Campinas Proceedings, he settled a twenty-eight-year-old conjecture of Jones and Thron by proving that almost all twin convergence regions for $K(a_n/1)$ generated by either disk-disk, disk-halfplane, or disk-complement of disk mappings are embeddable in those of his Limaçon Theorem. In two papers in the early 1980’s, Jerry developed the theory of δ-fractions. His δ-fraction work solved a number of problems dealing with the association of continued fractions and power series for analytic functions. Others have used his δ-fractions to approximate solutions of Riccati differential equations, and Jerry applied them to zero location and stability problems in one of his 1986 papers. In his 1986 work with Kalton, many outstanding problems in the area of equimodular limit-periodic continued fractions were solved. More than ten years later, some of this work was used to disprove an assertion of Ramanujan and now appears in Berndt’s Ramanujan’s Notebooks, Part V. The Worpitzky and Transcendental strips in his 1994 paper on strip convergence regions for continued fractions amount to the first known best convergence regions that are distortions of the famous parabolic regions and have inspired others to seek generalizations of them. In his 1995 paper in Constructive Approximation, Jerry completely settles the Oval Theorem for continued fractions and proves an earlier result of others false by actually showing that these ovals are embeddable in the parabolas of the Uniform Parabola Theorem. His Uniform Twin Parabola Theorem of 1994 in the Journal of Mathematical Analysis and Applications generalizes work of Thron fifty years earlier in several important ways. Uniformity and speed of convergence are obtained, and only the even elements need to be bounded. His work on Van Vleck fractions $K(1/b_n)$ in this publication should prove to be quite valuable in future research on complex continued fractions of this type. Jerry has participated by invitation in many research workshops and conferences in his field, including Boulder and Redstone, Colorado, Pitlochry and Aviemore, Scotland, Loen and Trondheim, Norway, and Campinas, Brazil.

Geraldine and Jerry have four children (two sons and two daughters) and nine grandchildren. Jerry retired on September 1, 1998, with the status of Professor Emeritus after thirty-eight years of service at MU. He is looking forward to enjoying mathematics, his family, and his other interests for a long time to come.

We wish the very best to Jerry in his future personal and professional endeavors.

Bruce C. Berndt
Fritz Gesztesy
Publications of L. J. Lange

$$\pi = 3 + \frac{1^2}{6 + \frac{3^2}{6 + \frac{5^2}{6 + \frac{7^2}{6 + \frac{9^2}{6 + \frac{11^2}{6 + \frac{13^2}{6 + \ldots}}}}}}}$$
A List of Participants

M. Ashbaugh, University of Missouri, Columbia
 E-Mail: mark@math.missouri.edu

R. Askey, University of Wisconsin, Madison
 E-Mail: askey@math.wisc.edu

J. Beem, University of Missouri, Columbia
 E-Mail: mathjkb@showme.missouri.edu

R. Benguria, P. Universidad Católica de Chile, Santiago, Chile
 E-Mail: rbenguri@lascar.puc.cl

B.C. Berndt, University of Illinois, Urbana-Champaign
 E-Mail: berndt@math.uiuc.edu

D. Bowman, University of Illinois, Urbana-Champaign
 E-Mail: bowman@math.uiuc.edu

K. N. Boyadzhiev, Ohio Northern University, Ada
 E-Mail: k-boyadzhiev@onu.edu

C. F. Bracciali, State University of São Paulo, Brazil,
 Current address: Mathematical Institute, University of St Andrews, Scotland
 E-Mail: cfb@st-and.ac.uk

A. Bultheel, Catholic University of Leuven, Belgium
 E-Mail: Adhemar.Bultheel@cs.kuleuven.ac.be

H. H. Chan, National University of Singapore, Singapore
 E-Mail: chanhh@math.nus.edu.sg

D. Chelst, Rutgers, New Jersey
 E-Mail: chelst@math.rutgers.edu

C. Chicone, University of Missouri, Columbia
 E-Mail: carmen@math.missouri.edu

G. Choi, University of Illinois, Urbana-Champaign
 E-Mail: g-choi1@math.uiuc.edu

Y.-S. Choi, University of Illinois, Urbana-Champaign
 E-Mail: y-choi2@students.uiuc.edu

S. Clark, University of Missouri, Rolla
 E-Mail: sclark@umr.edu

J. Conlon, University of Michigan, Ann Arbor
 E-Mail: conlon@math.lsa.umich.edu

R. Crownover, University of Missouri, Columbia
 E-Mail: rmc@math.missouri.edu

P. E. Ehrlich, University of Florida, Gainesville
 E-Mail: ehrlich@math.ufl.edu
A LIST OF PARTICIPANTS

Z. Franco, Butler University, Indianapolis
 E-Mail: franco@thomas.butler.edu

F. Gesztesy, University of Missouri, Columbia
 E-Mail: fritz@math.missouri.edu

P. González-Vera, La Laguna University, Tenerife, Spain
 E-Mail: pglez@ull.es

D. Hensley, Texas A&M University, College Station
 E-Mail: doug.hensley@math.tamu.edu

C. Hines, Institute for Defense Analyses, Fairview Hgts, IL
 E-Mail: cwhines@apci.net

M. Ismail, University of South Florida, Tampa
 E-Mail: ismail@hahn.math.usf.edu

W. B. Jones, University of Colorado, Boulder
 E-Mail: wjones@euclid.colorado.edu

N. J. Kalton, University of Missouri, Columbia
 E-Mail: nigel@math.missouri.edu

L. J. Lange, University of Missouri, Columbia
 E-Mail: jerry@math.missouri.edu

Y. Latushkin, University of Missouri, Columbia
 E-Mail: yuri@math.missouri.edu

X. Li, University of Central Florida, Orlando
 E-Mail: xli@pegasus.cc.ucf.edu

W.-C. Liaw, University of Illinois, Urbana-Champaign
 E-Mail: liaw@math.uiuc.edu

K. P. Litchfield, Farmington, Utah
 E-Mail: litchfieldk@worldnet.att.net

L. Lorentzen, Norwegian University of Science and Technology, Trondheim, Norway
 E-Mail: lisa@math.ntnu.no

P. Magnus, Ft. Collins, CO
 E-Mail: magnus@lagrange.math.colostate.edu

K. A. Makarov, University of Missouri, Columbia
 E-Mail: makarov@azure.math.missouri.edu

B. Meller, P.U. Católica de Chile, Santiago, Chile
 E-Mail: bmeller@bohr.fis.puc.cl

M. Mitrea, University of Missouri, Columbia
 E-Mail: marius@math.missouri.edu

P. Nevai, Ohio State University, Columbus
 E-Mail: nevai@math.ohio-state.edu

O. Njastad, Norwegian University of Science and Technology, Trondheim, Norway
 E-Mail: njastad@math.ntnu.no

M. Pang, University of Missouri, Columbia
 E-Mail: mathmhp@showme.missour.edu

S. Perrine, France Telecom, Metz, France
 E-Mail: serge.perrine@wanadoo.fr

T. Randolph, University of Missouri, Rolla
 E-Mail: randolph@umr.edu

A. S. Ranga, Universidade Estadual Paulista (UNESP), IBILCE, Brazil
 E-Mail: ranga@nimitz.dcce.ibilce.unesp.br
I. Rodnianski, Kansas State University, Manhattan
 E-Mail: irod@math.ksu.edu

F. Rønning, Sør-Trøndelag College, Trondheim, Norway
 E-Mail: froder@alu.hist.no

C. Rousseau, The University of Memphis, Memphis, TN
 E-Mail: rousseac@hermes.msci.memphis.edu

H.-J. Runckel, University of Ulm, Ulm, Germany
 E-Mail: runckel@mathematik.uni-ulm.de

E. Saab, University of Missouri, Columbia
 E-Mail: elias@math.missouri.edu

P. Saab, University of Missouri, Columbia
 E-Mail: paula@math.missouri.edu

G. Shen, University of Colorado, Boulder
 E-Mail: sheng@rintintin.colorado.edu

B. Simon, California Institute of Technology, Pasadena, CA
 E-Mail: bsimon@caltech.edu

V. Skarda, Brigham Young University, UT
 E-Mail: skarda@math.byu.edu

J. Sohn, University of Illinois, Urbana-Champaign
 E-Mail: j-sohn@math.uiuc.edu

K. Sollers, Cornell University, Ithaca, NY
 E-Mail: sollers@cam.cornell.edu

S. H. Son, University of Illinois, Urbana-Champaign
 E-Mail: son@math.uiuc.edu

R. Steinbauer, Ohio State University, Columbus
 E-Mail: robert@math.ohio-state.edu

F. E. Su, Harvey Mudd College, Claremont, CA
 E-Mail: su@math.hmc.edu

W. Van Assche, Catholic University of Leuven, Belgium
 E-Mail: Walter.VanAssche@wis.kuleuven.ac.be

I. Verbitsky, University of Missouri, Columbia
 E-Mail: igor@math.missouri.edu

H. Waadeland, Norwegian University of Science and Technology,
 Trondheim, Norway
 E-Mail: haakonwa@math.ntnu.no

B. Yeap, University of Illinois, Urbana-Champaign
 E-Mail: yeap@math.uiuc.edu

Z. Zhao, University of Missouri, Columbia
 E-Mail: zzhao@math.missouri.edu
209 Steven Cox and Irena Lasiecka, Editors, Optimization methods in partial differential equations, 1997
207 Yujiro Kawamata and Vyacheslav V. Shokurov, Editors, Birational algebraic geometry: A conference on algebraic geometry in memory of Wei-Liang Chow (1911–1995), 1997
206 Adam Korányi, Editor, Harmonic functions on trees and buildings, 1997
205 Paulo D. Cordaro and Howard Jacobowitz, Editors, Multidimensional complex analysis and partial differential equations: A collection of papers in honor of François Trèves, 1997
204 Yair Censor and Simeon Reich, Editors, Recent developments in optimization theory and nonlinear analysis, 1997
203 Hanna Nencka and Jean-Pierre Bourguignon, Editors, Geometry and nature: In memory of W. K. Clifford, 1997
201 J. R. Quine and Peter Sarnak, Editors, Extremal Riemann surfaces, 1997
198 Donald G. Saari and Zhihong Xia, Editors, Hamiltonian dynamics and celestial mechanics, 1996
197 J. E. Bonin, J. G. Oxley, and B. Servatius, Editors, Matroid theory, 1996
196 David Bao, Shiing-shen Chern, and Zhongmin Shen, Editors, Finsler geometry, 1996
195 Warren Dicks and Enric Ventura, The group fixed by a family of injective endomorphisms of a free group, 1996
194 Seok-Jin Kang, Myung-Hwan Kim, and Insook Lee, Editors, Lie algebras and their representations, 1996
193 Chongying Dong and Geoffrey Mason, Editors, Moonshine, the Monster, and related topics, 1996
192 Tomek Bartoszyński and Marion Scheepers, Editors, Set theory, 1995
191 Tuong Ton-That, Kenneth I. Gross, Donald St. P. Richards, and Paul J. Sally, Jr., Editors, Representation theory and harmonic analysis, 1995
190 Mourad E. H. Ismail, M. Zuhair Nashed, Ahmed I. Zayed, and Ahmed F. Ghaleb, Editors, Mathematical analysis, wavelets, and signal processing, 1995
188 Alejandro Adem, R. James Milgram, and Douglas C. Ravenel, Editors, Homotopy theory and its applications, 1995
187 G. W. Brumfiel and H. M. Hilden, SL(2) representations of finitely presented groups, 1995
186 Shreeram S. Abhyankar, Walter Feit, Michael D. Fried, Yasutaka Ihara, and Helmut Voelklein, Editors, Recent developments in the inverse Galois problem, 1995

For a complete list of titles in this series, visit the AMS Bookstore at [www.ams.org/bookstore/].
Continued Fractions: From Analytic Number Theory to Constructive Approximation
A Volume in Honor of L. J. Lange

Bruce C. Berndt and Fritz Gesztesy, Editors

This volume presents the contributions from the international conference held at the University of Missouri at Columbia, marking Professor Lange's 70th birthday and his retirement from the university. The principal purpose of the conference was to focus on continued fractions as a common interdisciplinary theme bridging gaps between a large number of fields—from pure mathematics to mathematical physics and approximation theory.

Evident in this work is the widespread influence of continued fractions in a broad range of areas of mathematics and physics, including number theory, elliptic functions, Padé approximations, orthogonal polynomials, moment problems, frequency analysis, and regularity properties of evolution equations. Different areas of current research are represented. The lectures at the conference and the contributions to this volume reflect the wide range of applicability of continued fractions in mathematics and the applied sciences.