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Introduction 

Arlan Ramsay and Jean Renault 

Groupoids were first noticed by Brandt in his study of quadratic forms. The 
reader can find a reference to his paper in the article by Alan Weinstein in the 
present volume. Since then they have been used in other areas, and we simply 
suggest some writers Weinstein mentions in his bibliography: algebraic geometry 
(Grothendieck), differential geometry (Ehresmann, Mackenzie), algebraic topology 
(Brown), group representations (Mackey), mathematical physics (Karasev, Wein-
stein), non-commutative geometry (Cannes), and operator algebras (Renault and 
Cannes). Of course there are many other writers. 

We hope that the readers of this volume will go beyond it to look at journal 
articles on groupoids and their uses, as well as other books already in print, and 
that some of them will join in. We have found groupoids both useful and interesting 
in their own right. 

While the material in these Proceedings is not comprehensive on the topic of 
groupoids, even in the three areas mentioned, we believe it will still be useful to a 
researcher or student interested in acquiring insight and information about the uses 
of these group-like structures. In some cases, there is symmetry of a nature not 
quite expressible in terms of groups. Other uses of groupoids can involve something 
of a dynamical nature. Indeed, some of the main examples come from group actions. 

It should be noted that in many situations where groupoids have been used, 
the main emphasis has not been on symmetry or dynamics issues. For example, 
a foliation is an equivalence relation and has another groupoid associated with it, 
called the holonomy groupoid. While the implicit symmetry and dynamics are 
relevant, the groupoid records mostly the structure of the space of leaves and the 
holonomy. More generally, the use of groupoids is very much related to various 
notions of orbit equivalence. The point of view that groupoids describe "singular 
spaces" can be found in work of A. Grothendieck and is prevalent in the non-
commutative geometry of A. Cannes. 

As with groups, measure theoretic, topological and differentiable structures can 
be added to the algebraic one, according to the context. The purely topological ad-
dition can be suitable for the topological context, but many situations in analysis, 
geometry or physics demand at least the addition of measures, or an awareness of 
measures that are implicit. Some facts about groupoids in analysis can be explained 
using only a measure theoretic structure, but that minimum is more often accom-
panied by a locally compact topology or a manifold structure. Some readers may 

ix 
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be surprised that spaces that are only locally Hausdorff are mentioned, but that 
latitude is needed in the context of foliations and pseudo-groups of transformations. 

Adding another structure requires more care for groupoids than it does for 
groups, mainly because of the fact that only certain pairs of elements can be mul-
tiplied. This feature can be expressed in terms of two maps from the groupoid to 
the space of units (identities), one selecting the right unit and the other the left 
unit. These maps are usually referred to as source and range maps, respectively, 
and denoted by sand r. (Sometimes, they ares and t, for source and target.) The 
convention is that the source of the left factor must equal the range of the right 
factor. 

It is to be expected that the level sets of these two maps, often called fibers for 
the range and source maps, enter into the proper formulation of how an additional 
structure relates to the algebraic structure. 

For example, a groupoid does not have a single left Haar measure, but instead 
a family of measures, each of which gives measure zero to the complement of one of 
the range fibers. A given groupoid element 'translates' the range fiber over its source 
to the range fiber over its range, by groupoid multiplication. (If 'Y' E r-1(s('Y)), 
then 'Y'Y' E r- 1 (r("f)).) Left invariance just means that the measure in the family 
that is concentrated on the fiber over its source is carried by this translation to the 
measure in the family that is concentrated on the fiber over its range. Of course, 
the family of measures must vary in a Borel fashion in the purely measure theoretic 
setting and continuously in the locally compact setting. 

Beyond the difference in formulation, which is expected for groupoids, we have 
the fact that the existence of a left Haar system is not automatic. Also, a given left 
Haar system can be multiplied by a well-behaved function of the form gos to obtain 
another left Haar system, so the uniqueness result for groups must be weakened 
considerably for groupoids. On the other hand, many processes can be formulated 
in terms of the class of the measure, even for groups (two measures are in the same 
class iff they have the same sets of measure 0). Thus the non-uniqueness is not a 
great hindrance. 

For topological groupoids, the range and source maps need to be open as well 
as continuous. Without this condition, the set of products of elements of two open 
sets need not be open, for example. 

The notion of smooth or Lie groupoid is particularly interesting. For the 
groupoid structure to be compatible with the manifold structure, the range and 
source maps need to be submersions, which is analogous to the requirement that 
they be open in the topological case. In the smooth case, having the range and 
source maps be submersions guarantees that the set of pairs in G x G that can be 
multiplied is a closed submanifold. We refer the reader to articles in these Proceed-
ings but also to the original articles by J. Pradines and to various books (Landsman, 
MacKenzie, Paterson, and Reinhart) and to papers mentioned there. Let us point 
out that Lie groupoids and Lie algebroids occur naturally in various contexts of 
pseudo-differential calculus (e.g. foliated manifolds, manifolds with boundaries, 
manifolds with corners). 

To finish this introduction, we include a few remarks on the content of the 
articles for the assistance of the reader. 

The article by A. Weinstein appeared first in the Notices of the American 
Mathematical Society. It is a good introduction to the way groupoids provide a 
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more comprehensive context for thinking about symmetry than groups do. One of 
his examples is that of a finite part of a tiling of the plane. 

The other articles are more specifically about one of the three topics of the 
conference, or relations between two or all of them. 

According to the introduction of the book by K. Mackenzie mentioned in the 
article by A. Weinstein, Ehresmann was the first person to use groupoids in dif-
ferential geometry. We refer to Mackenzie's book for much further information on 
groupoids in differential geometry. 

The article by A. Haefliger is one of the two that are primarily about geometry. 
That of Haefliger is about foliations. He explains several of the groupoids that 
can be associated to a foliation and points out results for which groupoids are 
important. He puts an emphasis on the ones that are etale. The techniques include 
sheaves of groupoids, cohomology of groupoids, etc. 

The article of I. Moerdijk shows how etale groupoids can be used to give con-
venient generalizations of ordinary topological spaces and manifolds. He explains 
G-sheaves, cohomology and other constructions for etale groupoids from the view-
point of derived categories. 

The article by G. Della Rocca and M. Takesaki is primarily in the area of 
analysis. They are specifically interested in understanding equivalence relations 
and equivalence classes in the context of classification problems. They expand the 
usual discussion of classification of representations or operator algebras by including 
the ways that equivalences can occur as well as the fact of equivalence. That is, 
they want to have a functor defined on the groupoid that produces the equivalence 
relation on the concretely constructed objects of interest. They make it clear what 
the advantages of this approach are by working out the case of UHF algebras in 
detail. 

P. Muhly introduces a new perspective for thinking about Fell bundles over 
groupoids. The approach is to think of them as subcategories of the category of 
C* -algebras in which the mappings are C* -correspondences. The discussion centers 
around bundles based on groupoids, as might be expected from the title. 

The article by D. Williams is primarily in the area of groupoids themselves, 
explaining a general tool for obtaining information about groupoids. He defines the 
Brauer group of a groupoid, and explains how it fits into various perspectives on 
groupoids. He describes the behavior of the Brauer group relative to equivalence 
and extensions, and provides cohomological meanings. 

A. Paterson has written about index theory for a well-behaved class of groupoid 
actions. Thus his article stands at the intersection of geometry and analysis, and 
has groupoids involved in the formulation of the result. 

Since G. Mackey introduced the virtual group philosophy, groupoids have been 
present in group representation theory and in operator algebras. Four contributions 
to this volume are directly related to operator algebras. 

The article by C. Anantharaman and J. Renault is a short survey on the 
amenability of groupoids, a notion directly prompted by the group case. One 
needs to distinguish the case of measured groupoids and the case of topological 
groupoids. The main problem considered is how amenability is reflected on the 
associated operator algebras. In the measured case, it is known since the work of 
R. Zimmer that it is related to the hyperfiniteness of the von Neumann algebras. 
In the topological context, it is related to the nuclearity of the C* -algebras and has 
interesting applications to the exactness of group C* -algebras. 
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As stated earlier, groupoids often appear as symmetries of a system or of anal-
gebra. P.-Y. Le Gall gives a concise survey of the Kasparov KK-theory equivariant 
with respect to a groupoid. This requires a precise definition, in the C* -algebraic 
setting, of a G-algebra, when G is a groupoid. The corresponding KK-functor, 
denoted by KKa(A, B), has now three variables, namely the groupoid G and the 
G-algebras A, B. Besides its usual properties in A and B, in particular the existence 
of the Kasparov product, its functoriality in G is useful in computing K- groups 
and has applications to the Baum-Connes conjecture. 

The two other contributions are concerned with Lie groupoids and their Lie 
algebroids. B. Monthubert shows, in the case of manifolds with corners, how a 
pseudo-differential calculus is related to the construction of a Lie groupoid G and 
how to get an index theorem from it. The smoothing operators have a kernel defined 
on G and the pseudo-differential operators have a symbol defined on the dual 9* of 
the Lie algebroid of G. The tangent groupoid, a notion introduced by A. Connes for 
that purpose, is a key ingredient in the proof of the index theorem. N. Landsman 
and B. Ramazan show that it also provides a deformation quantization of the 
Poisson bracket of 9*, in a C* -algebraic context, but with a definition different 
from that introduced by M. Rieffel. 
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Groupoids often occur when there is symmetry of a nature not expressible in terms of 
groups. Other uses of groupoids can involve something of a dynamical nature. Indeed, 
some of the main examples come from group actions. It should also be noted that in many 
situations where groupoids have been used, the main emphasis has not been on symmetry 
or dynamics issues. For example, a foliation is an equivalence relation and has another 
groupoid associated with it, called the holonomy groupoid. While the implicit symmetry 
and dynamics are relevant, the groupoid records mostly the structure of the space of leaves 
and the holonomy. More generally, the use of groupoids is very much related to various 
notions of orbit equivalence. The point of view that groupoids describe "singular spaces" 
can be found in the work of A. Grothendieck and is prevalent in the non-commutative 
geometry of A. Connes. 

This book presents the proceedings from the Joint Summer Research Conference on 
"Groupoids in Analysis, Geometry, and Physics" held in Boulder, CO. The book begins 
with an introduction to ways in which groupoids allow a more comprehensive view of 
symmetry than is seen via groups. Topics range from foliations, pseudo-differential oper-
ators, KK-theory, amenability, Fell bundles, and index theory to quantization of Poisson 
manifolds. Readers will find examples of important tools for working with groupoids. 
This book is geared to students and researchers. It is intended to improve their under-
standing of groupoids and to encourage them to look further while learning about the tools 
used. 
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