Quaternions, Spinors, and Surfaces
Quaternions, Spinors, and Surfaces

George Kamberov
Peter Norman
Franz Pedit
Ulrich Pinkall

American Mathematical Society
Providence, Rhode Island
Contents

Introduction vii
Basic Conventions viii

Part 1. Conformal Immersions via Quaternions 3
Chapter 1. Quaternionic Calculus and Immersions
1.1. Functions and Forms 4
1.2. Conformal and anti-conformal forms 6
1.3. Basic Geometric Formulae 13
1.4. Integrability: Codazzi’s Equations 17
1.5. C^1-minimal and Shape Class Immersions 23
1.6. Tensors and Tangential-Valued Forms 29
1.7. Regular Homotopy and Spin Transforms 35
1.8. Extrinsic versus Intrinsic Geometry 48
Chapter 2. Applications 55
2.1. Isothermic Immersions 55
2.2. Christoffel’s Problem 70
2.3. Bonnet’s Problem 74
2.4. The Local Weierstrass Representation 80

Part 2. Surfaces and Dirac Spinors 85
Chapter 3. Spinor Algebra
3.1. Spinor Bundles: First Steps 85
3.2. Spinor Bundles: Structures 87
3.3. From Spinors to Complex Structures 93
3.4. Spinors, Immersions, Regular Homotopy 93
3.5. Densities, norms, and the Clifford product 95
3.6. Interpretation of Spinors 100
Chapter 4. Dirac Spinors and Conformal Immersions 103
4.1. The Conformal Dirac Operator 103
4.2. Connection with the Classical Theory 106
4.3. Conformal Immersions and Spinors 108
4.4. Prescribing the Gauss Map of a Minimal Surface 112
4.5. Bonnet Immersions 123

Bibliography 131
Glossary of Symbols 135
Index 137
Introduction

In this book we describe how to use quaternions and spinors to study conformal immersions of Riemann surfaces into \mathbb{R}^3. The theory is global.

The principal new idea is to use quaternionic calculus. The classical approach to surface theory is based on vector calculus, moving frames, and complex analysis. When applied to the study of generic problems these tools often lead to complicated nonlinear differential equations. Further, apparently insurmountable complications arise at the singular loci of vector fields and moving frames. We use quaternionic calculus to obtain simpler differential equations and to cut through the confusion caused by singularities. At the same time the quaternionic approach to studying surfaces naturally incorporates the topological invariants of the immersion, in particular, its regular homotopy type.

Our main interest is in conformal immersions. This stems primary from our interest in the questions: what are the minimal sets of invariants needed to identify a surface? How does one construct a surface with particular properties, for example, shape or prescribed Gauss map? The bulk of classical work on surfaces in space forms concerns isometric immersions. This often leads to interesting but distracting problems concerning the possibility of isometric embedding a surface with a prescribed Riemannian metric. Thus one risks proving vacuous rigidity results for metrics which are not realizable. In contrast, every conformal structure can be realized by a conformal immersion. Furthermore in many applications the conformal structure comes up naturally, while this is not the case with isometric immersions. We obtain results on isometric immersions as more refined cases of the conformal theory. Indeed, we began to develop the theory in order to tackle a metric geometry problem posed by Bonnet [KPP].

The first part of the book develops the necessary quaternionic calculus on surfaces, its application to surface theory and the study of regular homotopy classes of immersions, conformal immersions, spinor transforms, and the connection between extrinsic and intrinsic conformal geometry. The integrability conditions for spinor transforms lead naturally to Dirac spinors and their application to conformal immersions. In the second part of the book we present a complete spinor calculus on a Riemann surface, the definition of a conformal Dirac operator, and a generalized Weierstrass representation valid for all surfaces. On a Riemann surface one can interpret spinors as the square roots of conformal \mathbb{R}^3-valued one-forms. In particular, spinors encode the conformal immersions of the tangent plane of a Riemann surface into \mathbb{R}^3. This approach provides a tool to take smooth square roots of geometric objects like vectors and forms, and to uncover new invariants. This theory suggests new existence and rigidity paradigms for immersions, and new insights into classical existence and rigidity problems. A significant advantage of the new approach is that it leads to nonsingular linear differential equations.
The idea to study conformal immersions via quaternionic and spinor calculus is akin to well established ideas in particle physics and quantum mechanics. The group of nonzero quaternions H^* is the universal cover of the relevant gauge group, $SO(3) \times \mathbb{R}^+$. Thus it is not surprising that a quaternionic calculus is well adapted to the study of conformal immersions. In contrast, complex calculus is an efficient tool to study geometries whose gauge group is C^*. The problem of reformulating low dimensional geometry in terms of quaternions was posed by W. Hamilton. The connection between spinors and surface immersions has been established at least since the 1960’s. (See [JT, HH, Pin85]). As far as we can tell, Dennis Sullivan was the first to exploit this connection to obtain convenient representation of surface immersions using spinors [Sul89]. His result is for minimal surfaces. It appears that there were several other unpublished attempts to employ spinors to generalize the Weierstrass representation of minimal surfaces and to obtain a Weierstrass type representation of constant mean curvature surfaces (for example, Abresch). Several related papers and preprints appeared [Bob93, KS93, Ko, KT95, Ric95].

The theory in this monograph grew from the work of the GANG seminar at the University of Massachusetts, Amherst, during 1995-1996. The main speakers were the authors. Additional talks were given by Fran Burstall, Udo Hetrich-Jeromin, Martin Killian, Jorg Richter, Nick Schmidt, and Iskander Taimanov. Since 1996 the theory was developed further and continues to be developed in a series of lectures, and papers [Pin96, FP, GK6, KPP, GK4, FP2, GK3, GK5]. The purpose of this monograph is to give a self contained presentation of the part of the theory developed to study Bonnet’s problem, Christoffel’s problem, shape class immersions, and the surface reconstruction applications discussed in [KK, KK3, KK2]. Early results were announced in [GK96b]. During the preparation of this book the Dirac spinor ideas have been generalized to the theory of quaternionic holomorphic bundles [PP]. This theory has implications to the study of Willmore surfaces, the energy of harmonic 2-tori and to Dirac eigenvalue estimates over compact surfaces [BFLPP, FLPP].

The first author thanks Rosa Maria Chavez, Maria Elisa Galvao, Roberto Costa, and Fabiano Brito, and the geometry group at University of Sao Paulo, Brazil for the opportunity to give a month long series of lectures and to prepare a set of notes on quaternionic calculus and geometry [GK6], and to Lucio Rodriguez and Manfredo DoCarmo, and Ivan and Renato Tribuzy for their hospitality and useful discussions. We are grateful to Robert Bryant, Dennis DeTurck, Bob Hardt, Gary Jensen, Steven Semmes, and Mike Wolf for their interest and insights.

Basic Conventions

Following W. Hamilton we identify Euclidean four-space with the space of quaternions $H := \{\rho + xi + yj + zk | (\rho, x, y, z) \in \mathbb{R}^4\}$, and Euclidean three-space as the subspace of imaginary quaternions $\text{im}(H) = \{xi + yj + zk | (x, y, z) \in \mathbb{R}^3\}$. Thus throughout this book $\mathbb{R}^4 = H$ and $\mathbb{R}^3 = \text{im}(H)$. The quaternionic multiplication gives a unified approach to the scalar product $< \cdot, \cdot >$, and the cross product \times of vectors in Euclidean three-space. Indeed, for every two vectors $a, b \in \text{im}(H)$ we have

$$ab = -<a|b> + a \times b.$$

(0.0.1)

As usual the double covering map from H^* onto the group formed by scalings and rotations is the map assigning to every nonzero quaternion q the transformation
$v \in \mathbb{R}^3 \rightarrow qvq \in \mathbb{R}^3$. In particular, we will identify the universal cover $\text{Spin}(3)$ of $SO(3)$ with the unit quaternions S^3. The differential df of an immersion f of M into $\mathbb{R}^3 = \text{im}(\mathbb{H})$ is a \mathbb{H}-valued 1-form on the abstract surface M. Starting from these basic ideas one can reformulate surface theory in terms of quaternionic-valued objects. We are concerned primarily with oriented surfaces, so M will denote an oriented connected surface. Unless we explicitly specify otherwise, we will also assume that M is a Riemann surface, i.e., that there is a chosen conformal structure on M.
Titles in This Series

299 **George Kamberov, Peter Norman, Franz Pedit, and Ulrich Pinkall**, Quaternions, spinors, and surfaces, 2002
298 **Robert Gilman, Alexei G. Myasnikov, and Vladimir Shpilrain**, Editors, Computational and statistical group theory, 2002
297 **Stephen Berman, Paul Fendley, Yi-Zhi Huang, Kailash Misra, and Brian Parshall**, Editors, Recent developments in infinite-dimensional Lie algebras and conformal field theory, 2002
296 **Sean Cleary, Robert Gilman, Alexei G. Myasnikov, and Vladimir Shpilrain**, Editors, Combinatorial and geometric group theory, 2002
295 **Zhangxin Chen and Richard E. Ewing**, Editors, Fluid flow and transport in porous media: Mathematical and numerical treatment, 2002
294 **Robert Coquereaux, Ariel García, and Roberto Trinchero**, Editors, Quantum symmetries in theoretical physics and mathematics, 2002
293 **Donald M. Davis, Jack Morava, Goro Nishida, W. Stephen Wilson, and Nobuaki Yagita**, Editors, Recent progress in homotopy theory, 2002
292 **A. Chenciner, R. Cushman, C. Robinson, and Z. Xia**, Editors, Celestial Mechanics, 2002
291 **Bruce C. Berndt and Ken Ono**, Editors, q-series with applications to combinatorics, number theory, and physics, 2001
290 **Michel L. Lapidus and Machiel van Frankenhuysen**, Editors, Dynamical, spectral, and arithmetic zeta functions, 2001
289 **Salvador Pérez-Esteva and Carlos Villegas-Blas**, Editors, Second summer school in analysis and mathematical physics: Topics in analysis: Harmonic, complex, nonlinear and quantization, 2001
287 **Marlos A. G. Viana and Donald St. P. Richards**, Editors, Algebraic methods in statistics and probability, 2001
283 **Paul A. Milewski, Leslie M. Smith, Fabian Waleffe, and Esteban G. Tabak**, Editors, Advances in wave interaction and turbulence, 2001
282 **Arlan Ramsay and Jean Renault**, Editors, Groupoids in analysis, geometry, and physics, 2001
281 **Vadim Olshevsky**, Editor, Structured matrices in mathematics, computer science, and engineering II, 2001
280 **Vadim Olshevsky**, Editor, Structured matrices in mathematics, computer science, and engineering I, 2001
278 **Eric Todd Quinto, Leon Ehrenpreis, Adel Faridani, Fulton Gonzalez, and Eric Grinberg**, Editors, Radon transforms and tomography, 2001
277 **Luca Capogna and Loredana Lanzani**, Editors, Harmonic analysis and boundary value problems, 2001
276 **Emma Previato**, Editor, Advances in algebraic geometry motivated by physics, 2001
TITLES IN THIS SERIES

274 Ken-ichi Maruyama and John W. Rutter, Editors, Groups of homotopy self-equivalences and related topics, 2001

272 Eva Bayer-Fluckiger, David Lewis, and Andrew Ranicki, Editors, Quadratic forms and their applications, 2000

271 J. P. C. Greenlees, Robert R. Bruner, and Nicholas Kuhn, Editors, Homotopy methods in algebraic topology, 2001

270 Jan Denef, Leonard Lipschitz, Thanases Pheidas, and Jan Van Geel, Editors, Hilbert’s tenth problem: Relations with arithmetic and algebraic geometry, 2000

269 Mikhail Lyubich, John W. Milnor, and Yair N. Minsky, Editors, Laminations and foliations in dynamics, geometry and topology, 2001

266 Caroline Grant Melles and Ruth I. Michler, Editors, Singularities in algebraic and analytic geometry, 2000

265 Dominique Arlettaz and Kathryn Hess, Editors, Une dégustation topologique: Homotopy theory in the Swiss Alps, 2000

264 Kai Yuen Chan, Alexander A. Mikhalev, Man-Keung Siu, Jie-Tai Yu, and Efim I. Zelmanov, Editors, Combinatorial and computational algebra, 2000

263 Yan Guo, Editor, Nonlinear wave equations, 2000

262 Paul Igodt, Herbert Abels, Yves Félix, and Fritz Grunewald, Editors, Crystallographic groups and their generalizations, 2000

261 Gregory Budzban, Philip Feinsilver, and Arun Mukherjea, Editors, Probability on algebraic structures, 2000

260 Salvador Pérez-Esteva and Carlos Villegas-Blas, Editors, First summer school in analysis and mathematical physics: Quantization, the Segal-Bargmann transform and semiclassical analysis, 2000

258 Karsten Grove, Ib Henning Madsen, and Erik Kjær Pedersen, Editors, Geometry and topology: Aarhus, 2000

256 Irwin Kra and Bernard Maskit, Editors, In the tradition of Ahlfors and Bers: Proceedings of the first Ahlfors-Bers colloquium, 2000

255 Jerry Bona, Katarzyna Saxton, and Ralph Saxton, Editors, Nonlinear PDE’s, dynamics and continuum physics, 2000

254 Mourad E. H. Ismail and Dennis W. Stanton, Editors, q-series from a contemporary perspective, 2000

253 Charles N. Delzell and James J. Madden, Editors, Real algebraic geometry and ordered structures, 2000

252 Nathaniel Dean, Cassandra M. McZeal, and Pamela J. Williams, Editors, African Americans in Mathematics II, 1999
TITLES IN THIS SERIES

250 Robert H. Gilman, Editor, Groups, languages and geometry, 1999
249 Myung-Hwan Kim, John S. Hsia, Yoshiyuki Kitaoka, and Rainer Schulze-Pillot, Editors, Integral quadratic forms and lattices, 1999
248 Naihuan Jing and Kailash C. Misra, Editors, Recent developments in quantum affine algebras and related topics, 1999
247 Lawrence Wasson Baggett and David Royal Larson, Editors, The functional and harmonic analysis of wavelets and frames, 1999
246 Marcy Barge and Krystyna Kuperberg, Editors, Geometry and topology in dynamics, 1999
245 Michael D. Fried, Editor, Applications of curves over finite fields, 1999
244 Leovigildo Alonso Tarrio, Ana Jeremías López, and Joseph Lipman, Studies in duality on noetherian formal schemes and non-noetherian ordinary schemes, 1999
243 Tsit Yuan Lam and Andy R. Magid, Editors, Algebra, K-theory, groups, and education, 1999
242 Bernhelm Booss-Bavnbek and Krzysztof Wojciechowski, Editors, Geometric aspects of partial differential equations, 1999
241 Piotr Pragacz, Michał Szurek, and Jarosław Wiśniewski, Editors, Algebraic geometry: Hirzebruch 70, 1999
240 Angel Carocca, Víctor González-Aguilera, and Rubí E. Rodríguez, Editors, Complex geometry of groups, 1999
239 Jean-Pierre Meyer, Jack Morava, and W. Stephen Wilson, Editors, Homotopy invariant algebraic structures, 1999
238 Gui-Qiang Chen and Emmanuele DiBenedetto, Editors, Nonlinear partial differential equations, 1999
237 Thomas Branson, Editor, Spectral problems in geometry and arithmetic, 1999
236 Bruce C. Berndt and Fritz Gesztesy, Editors, Continued fractions: From analytic number theory to constructive approximation, 1999
235 Walter A. Carnielli and Itala M. L. D'Ottaviano, Editors, Advances in contemporary logic and computer science, 1999
234 Theodore P. Hill and Christian Houdré, Editors, Advances in stochastic inequalities, 1999
233 Hanna Nencka, Editor, Low dimensional topology, 1999
232 Krzysztof Jarosz, Editor, Function spaces, 1999
231 Michael Farber, Wolfgang Lück, and Shmuel Weinberger, Editors, Tel Aviv topology conference: Rothenberg Festschrift, 1999
230 Ezra Getzler and Mikhail Kapranov, Editors, Higher category theory, 1998
228 Liming Ge, Huaxin Lin, Zhong-Jin Ruan, Dianzhou Zhang, and Shuang Zhang, Editors, Operator algebras and operator theory, 1999
227 John McCleary, Editor, Higher homotopy structures in topology and mathematical physics, 1999

For a complete list of titles in this series, visit the AMS Bookstore at [www.ams.org/bookstore/].
Many problems in pure and applied mathematics boil down to determining the shape of a surface in space or constructing surfaces with prescribed geometric properties. These problems range from classical problems in geometry, elasticity, and capillarity to problems in computer vision, medical imaging, and graphics. There has been a sustained effort to understand these questions, but many problems remain open or only partially solved.

This book describes how to use quaternions and spinors to study conformal immersions of Riemann surfaces into \mathbb{R}^3. The first part develops the necessary quaternionic calculus on surfaces, its application to surface theory and the study of conformal immersions and spinor transforms. The integrability conditions for spinor transforms lead naturally to Dirac spinors and their application to conformal immersions. The second part presents a complete spinor calculus on a Riemann surface, the definition of a conformal Dirac operator, and a generalized Weierstrass representation valid for all surfaces. This theory is used to investigate first, to what extent a surface is determined by its tangent plane distribution, and second, to what extent curvature determines the shape.

The book is geared toward graduate students and researchers interested in differential geometry and geometric analysis and their applications in computer vision and computer graphics.