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Preface 

Algebraic geometry and geometric modeling both deal with curves and surfaces 
generated by polynomial equations. Algebraic geometry investigates the theoretical 
properties of polynomial curves and surfaces; geometric modeling uses polynomial, 
piecewise polynomial, and rational curves and surfaces to build computer models 
of mechanical components and assemblies for industrial design and manufacture. 

Although geometric modeling and algebraic geometry feature different prob-
lems and emphasize different concerns, geometric modeling has routinely borrowed 
theoretical insights and computational techniques from algebraic geometry. Using 
classical resultants to solve systems of polynomial equations or to find the implicit 
equations of rational curves and surfaces, computing intersections, analyzing sin-
gularities, and modeling shapes with implicit polynomial equations all have their 
origins in classical algebraic geometry. 

During the first half of the twentieth century, algebraic geometry moved away 
from computational methods in favor of deeper and deeper abstractions - schemes, 
sheaves, and sheaf cohomology were all the rage - but in the second half of the twen-
tieth century as computers became cheap and ubiquitous this fashion reversed in 
favor of less abstract, more algorithmic techniques. The trend today towards algo-
rithmic algebraic geometry lends itself quite naturally to applications in geometric 
modeling. 

Geometric modeling was initiated in the automobile industry during the 1960's 
with the work of Bezier, de Casteljau, Gordon, and Coons on computer aided 
surface design [BFK84]. Paradoxically, the earliest mathematical roots of geo-
metric modeling are not in geometry, but rather in approximation theory and 
numerical analysis. It was not until 1983 that classical computational methods 
from algebraic geometry were first introduced into geometric modeling by Tom 
Sederberg in his Ph.D. thesis [Sed83], where he applies Dixon's resultant to find 
the implicit equation for rational surfaces. Since Sederberg's dissertation, applica-
tions in geometric modeling of the classical resultants of Dixon, Macaulay, Bezout, 
and Sylvester have been investigated by many researchers, including Sederberg 
and Anderson [SAG84], Tiller and Montaudouin [TM84], Manocha and Canny 
[MC92a, MC92b], Chionh and Goldman [CGM91, CG92], and Bajaj and Ab-
hyankar [BA89]. 

Applications of algebraic geometry in geometric modeling are now quite com-
mon. To give a sense of the broad impact of algebraic geometry on geometric 
modeling, we list below a few representative samples of the extensive research and 
numerous researchers in geometric modeling who have used or are currently using 
algebraic geometry. 

v 
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• Schwartz and his associates (1983) analyze all the intersections of quadric 
surfaces for inclusion in solid modeling systems based on classical methods 
from algebraic geometry [OSS83]. 

• Warren (1986) studies geometric continuity between algebraic curves and 
surfaces and then applies his results to find blends between algebraic 
patches in his Ph.D. thesis [War86]. 

• Garrity and Warren (1989) build data structures for the intersection curves 
between algebraic surfaces using techniques adapted from algebraic geom-
etry [GW89]. 

• Farouki and his collaborators (1989) investigate degenerate intersections 
of quadric surfaces using the Segre characteristic of a quadratic form 
[FN089]. 

• Hoffmann (1989) uses Groebner bases to solve polynomial equations, find 
intersections of algebraic surfaces, and locate singularities in his book on 
solid modeling [Ho£96]. 

• Bajaj and his students (1990) developed the software toolkit GANITH, 
based on computational algebraic geometry, to assist with geometric mod-
eling applications [BR90]. 

• Winkler and his collaborators (1991) developed CASA, a computer algebra 
package for constructive algebraic geometry, that implements the classical 
analysis of singularities in order to robustly render algebraic curves and 
surfaces [WGKW91, WHHOO]. 

• Sederberg and Chen (1995) and Zhang, Chionh, and Goldman (2000) ex-
plore the use of syzygies for the efficient implicitization of rational surfaces 
with base points [SC95, ZCGOO]. 

Algebraic geometers have also contributed directly to geometric modeling. 
• Abhyankar and Bajaj (1987-1989) collaborated on a series of papers inves-

tigating rational parametrizations of curves and surfaces [AB87a, AB87b, 
AB88, AB89]. 

• Abhyankar (1990) wrote a book on algebraic geometry specifically for 
engineers [Abh90]. 

• Cox, Little, and O'Shea (1996,1998) wrote two books on algebraic geome-
try that have had a substantial influence on an important segment of the 
geometric modeling community [CL096, CL098]. 

• Cox (1998-2001) has also lent his expertise to help in the exploration and 
analysis of syzygies for the efficient implicitization of rational surfaces 
[CoxOl, CZGOO]. 

Recently, geometric modeling has begun to return the favor to algebraic ge-
ometry. Computational and numerical issues involving classical resultants have 
been investigated for the first time by Manocha and Canny [MC92a, MC92b] 
and by Winkler and Goldman [WG03]. New representations for sparse resultants 
have been developed by Chionh, Goldman, and Zhang [ChiOl, CZGOO, ZGOO] 
and also by Zube [ZubOO]. Cox, Sederberg, and Chen introduced the notion of a 
J.L-basis for the classification of rational curves [CSC98]. Conjectures on syzygies 
initiated by geometric modelers [CZGOO, SC95] have recently been proved by 
algebraic geometers [CZGOO, D' AOl]. 

The first wave of interactions between algebraic geometry and geometric mod-
eling - spanning roughly the years from 1983-1995 - focused mainly on classical 
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algebraic geometry: standard resultants, complex projective spaces, conic sections 
and quadric surfaces, intersections, and singularities. Building on these past suc-
cesses, we decided in light of some recent new developments in both fields to initiate 
a second wave of synergy between these two research communities focusing this time 
on modern algebraic geometry, including sparse resultants, toric varieties, and real 
algebraic geometry. 

In the summer of 2002, NSF sponsored a four day workshop on algebraic 
geometry and geometric modeling in Vilnius, Lithuania. The primary purpose 
of this workshop was to bring together some of the top people in these two re-
search communities in order to examine a broad range of themes of interest to 
both fields. Vilnius was chosen as the site of this workshop because a strong 
group of mathematicians and computer scientists working at Vilnius University had 
taken the lead in investigating applications of toric varieties to geometric modeling 
(KK99, Kra97, KraOl, Kra02, ZubOO). By holding the workshop in Vilnius, 
we hoped to strengthen not only the links between the algebraic geometry and 
geometric modeling communities, but also the ties between researchers in the USA 
and researchers in Eastern Europe. 

The organizers of the workshop had several goals. We wanted to reinvigorate 
geometric modeling by bringing to bare more recent developments from algebraic 
geometry. We also hoped to interest algebraic geometers in problems that arise 
in geometric modeling. We felt too that there are some important insights that 
geometric modeling could contribute to algebraic geometry. But before we could 
accomplish any of these goals, people from the two disciplines needed to talk to each 
other, to understand each others languages, problems, tools, and requirements. To 
foster these objectives, we included survey talks and tutorials as well as papers on 
basic research. 

This volume is an outgrowth of the Vilnius Workshop on Algebraic Geometry 
and Geometric Modeling; most of the papers collected here are based on talks 
presented at this workshop. The purpose of this book is to provide a service to 
both communities by bringing the topics addressed at this workshop to a wider 
audience. 

Topics in Algebraic Geometry and Geometric Modeling is divided into five 
sections: 

i. Modeling Curves and Surfaces 
ii. Multisided Patches 

iii. Implicitization and Parametrization 
iv. Toric Varieties 
v. Mixed Volume and Resultants 

In keeping with our goal of forging new links between algebraic geometry and 
geometric modeling, each section contains papers from both disciplines, though 
some sections are necessarily weighted more heavily to one or the other of these 
fields. 

Modeling curves and surfaces is one of the primary ambitions of geometric 
modeling, so we begin with three papers on this general theme. Analysis algorithms 
for Bezier curves and surfaces, intersection algorithms for conic sections and quadric 
surfaces, and a new surface modeling paradigm with roots in differential topology 
are presented here. Much of this material will be familiar to researchers in geometric 
modeling, but our intention is that this section may serve as a brief introduction 
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to the field of geometric modeling for researchers in algebraic geometry. We hope 
too that people in geometric modeling will gain some new insights from some of 
the fresh perspectives presented here. 

Multisided patches are an emerging theme is geometric modeling [KK99, 
Kra02, War92]. Until recently most of the attention in this field has focused 
on modeling three sided and four sided patches, but general n-sided patches are 
often required to fill n-sided holes. Modeling multisided patches is one area where 
we expect that toric varieties will make an important contribution to geometric 
modeling. The papers in this section not only survey the current state of the art, 
but also break some new ground in this domain. 

Implicitization and parametrization are fundamental both in geometric mod-
eling and in algebraic geometry. The first two papers in this section deal with a 
new implicitization method. Initially introduced in geometric modeling for implic-
itizing surfaces with base points, the method of moving surfaces (or syzygies) can 
be analyzed rigorously only by invoking powerful techniques from algebraic geom-
etry and commutative algebra. The first two papers presented here discuss what 
is currently provable about this new method as well as the latest developments in 
this new technique. The third paper in this section treats approximate implicit-
ization. Approximate implicitization owes as much to approximation theory and 
numerical analysis as it does to algebraic geometry and geometric modeling, so this 
paper presents an important attempt to merge insights from several fields. This 
section closes with a paper that discusses the current state of the art in surface 
parametrization. 

Toric varieties are a major new paradigm in modern algebraic geometry. We 
observed in Section 1 and Section 2 that toric varieties may have practical appli-
cations in geometric modeling to the design of multisided patches. Here we devote 
an entire section to toric varieties. A tutorial is provided first for the uninitiated, 
and then three research papers are presented. We hope that this section will serve 
as an introduction to toric varieties for people in geometric modeling who find it 
difficult to penetrate the sometimes esoteric literature of algebraic geometry. We 
also expect that some of the new results presented here will contribute to further 
developments both in algebraic geometry and in geometric modeling. 

Mixed volume and resultants are our final topic. Elimination theory is one of 
the primary computational tools of classical algebraic geometry, and sparse resul-
tants are their modern incarnation. Some of the latest results on sparse resultants 
are presented here. The connection between mixed volume and blossoming is dis-
cussed in Section 1. In this section the intuition behind the link between mixed 
volume and the number of roots of polynomial equations is explained; rigorous 
proofs are also provided. This section closes with a new elimination algorithm for 
Laurent polynomials together with a new formula for mixed volume. As a special 
treat, we have included in this section a translation of Minding's 1841 paper On the 
determination of the degree of an equation obtained by elimination, which foreshad-
ows the modern application of mixed volume. This paper has intellectual as well 
as historical interest. In a commentary after the paper, the translators explain how 
Minding's formula relates to the mixed area of lattice polygons. They also explain 
how this approach relates to the way Newton used Newton polytopes. 

The ultimate purpose of this book is to promote closer cooperation between 
two distinct cultures and disciplines - between algebraic geometers and geometric 
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modelers, between theoreticians and practitioners, between mathematicians and 
computer scientists - in order to further the goals and aspirations of both fields. 
By focusing the attention of these two research communities on problems that are 
of both theoretical and practical importance, we hope to establish stronger links 
and longer range ties between these two disparate groups, and to foster as well more 
focused interdisciplinary research that will have a substantial, long lasting, impact 
on both fields. 

In this spirit of cooperation and with the understanding that much of the 
difficult work still remains to be done, we urge you to read on, study hard, and 
enjoy these mathematical meditations! 
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lattice polytope, 217 
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mixed subdivision, 312-314, 316, 358 
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moment map, 238 
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projective space, 67, 204 
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rendering algorithm, 8 
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saturation, 143, 163, 165 
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spline surface, 55 
Steiner surface, 242 
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subdivision surface, 58 
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surface 
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See also Bezier patch 
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Steiner, 242 
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toric, 194 
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syzygy module, 132 

T-equivariant, 269 
T-equivariant blowing-up, 270 

tangent space, 46, 49 
tensor product surface, 135, 152 

See also Bezier patch, tensor product 
tensor-border net, 114 
tensor-border patch, 68, 114 
toric automorphism, 271 

elementary toric automorphism, 270 
multiplicative automorphism, 270 

toric Bezier patch, 68, 73 
blossoming of, 84 
boundaries of, 80 
degree elevation, 87 
differentiating of, 82 
parametric degree, 89 
See also toric patch 

toric deformation, 300, 315 
toric equivalence, 279 
toric ideal, 208, 227 
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See also toric Bezier patch 
toric surface, 194 
toric variety, 204, 225, 231 
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triangular surface, 138 

See also Bezier patch; triangular 
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Algebraic geometry and geometric modeling both deal with curves and surfaces generated 
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mination of the degree of an equation obtained by elimination", which foreshadows the 
modern application of mixed volumes in algebraic geometry. 
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