CONTEMPORARY MATHEMATICS

334

Topics in Algebraic Geometry and Geometric Modeling

Workshop on

Algebraic Geometry and Geometric Modeling July 29 - August 2, 2002

Vilnius University
Vilnius, Lithuania
Ron Goldman Rimvydas Krasauskas

Editors

ONTEMPORARY MATHEMATICS

334

Topics in Algebraic Geometry and Geometric Modeling

Workshop on
Algebraic Geometry and Geometric Modeling July 29 - August 2, 2002
Vilnius University
Vilnius, Lithuania
Ron Goldman
Rimvydas Krasauskas
Editors

Editorial Board

Dennis DeTurck, managing editor

Andreas Blass Andy R. Magid Michael Vogelius

2000 Mathematics Subject Classification. Primary 14M25, 14Qxx, 52B20, 65Dxx, 68U07; Secondary 13D02, 13P10, 14E20, 41A25, 58D99.

Library of Congress Cataloging-in-Publication Data

Workshop on Algebraic Geometry and Geometric Modeling (2002 : Vilnius University)
Topics in algebraic geometry and geometric modeling : Workshop on Algebraic Geometry and Geometric Modeling, July 29-August 2, 2002, Vilnius University, Lithuania / Ron Goldman, Rimvydas Krasauskas, editors.
p. cm. - (Contemporary mathematics, ISSN 0271-4132; 334)

Includes bibliographical references and index.
ISBN 0-8218-3420-7 (alk. paper)

1. Curves on surfaces-Mathematical models-Congresses. 2. Algebraic geometry-Congresses. I. Goldman, Ron, 1947- II. Krasauskas, Rimvydas, 1958- III. Title. IV. Series.

QA565.W76 2002
516.3'5-dc22

2003055938

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)
(c) 2003 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights
except those granted to the United States Government. Printed in the United States of America.The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/

Contents

Preface v
Modeling Curves and Surfaces
Polar forms in geometric modeling and algebraic geometry 3
Ron Goldman
Interference analysis of conics and quadrics 25
Wenping Wang and Rimyydas Krasauskas
Geometrically continuous octahedron 37
Raimundas Vidūnas
Multisided Patches
Smoothness, fairness and the need for better multi-sided patches 55
Jörg Peters
Toric Bézier patches with depth 65
Rimyydas Krasauskas and Ron Goldman
On the uniqueness of barycentric coordinates 93
Joe Warren
Rational M-patches and tensor-border patches 101
Kȩstutis Karc̆iauskas
Implicitization and Parametrization
Curves, surfaces, and syzygies 131
David Cox
Implicitizing rational surfaces with base points using the method of moving surfaces 151
Jianmin Zheng, Thomas W. Sederberg, Eng-Wee Chionh, and David A. Cox
Overview of approximate implicitization 169
Tor Dokken and Jan Brede Thomassen
Algorithms for rational surfaces 185
Josef Schicho
Toric Varieties
What is a toric variety? 203
David Cox
Toric ideals, real toric varieties, and the moment map 225
Frank Sottile
Universal rational parametrizations and toric varieties 241
David Cox, Rimvydas Krasauskas, and Mircea Mustaţǎ
Real structures on smooth compact toric surfaces 267
Claire Delaunay
Mixed Volume and Resultants
Why polyhedra matter in non-linear equation solving 293
J. Maurice Rojas
Using projection operators in computer aided geometric design 321
Laurent Busé, Mohamed Elkadi, and Bernard Mourrain
On combinatorial coefficients and the Gelfond-Khovanskii residue formula 343
Ivan Soprounov
On the determination of the degree of an equation obtained by elimination 351
Ferdinand Minding
Index 363

Preface

Algebraic geometry and geometric modeling both deal with curves and surfaces generated by polynomial equations. Algebraic geometry investigates the theoretical properties of polynomial curves and surfaces; geometric modeling uses polynomial, piecewise polynomial, and rational curves and surfaces to build computer models of mechanical components and assemblies for industrial design and manufacture.

Although geometric modeling and algebraic geometry feature different problems and emphasize different concerns, geometric modeling has routinely borrowed theoretical insights and computational techniques from algebraic geometry. Using classical resultants to solve systems of polynomial equations or to find the implicit equations of rational curves and surfaces, computing intersections, analyzing singularities, and modeling shapes with implicit polynomial equations all have their origins in classical algebraic geometry.

During the first half of the twentieth century, algebraic geometry moved away from computational methods in favor of deeper and deeper abstractions - schemes, sheaves, and sheaf cohomology were all the rage - but in the second half of the twentieth century as computers became cheap and ubiquitous this fashion reversed in favor of less abstract, more algorithmic techniques. The trend today towards algorithmic algebraic geometry lends itself quite naturally to applications in geometric modeling.

Geometric modeling was initiated in the automobile industry during the 1960's with the work of Bezier, de Casteljau, Gordon, and Coons on computer aided surface design [BFK84]. Paradoxically, the earliest mathematical roots of geometric modeling are not in geometry, but rather in approximation theory and numerical analysis. It was not until 1983 that classical computational methods from algebraic geometry were first introduced into geometric modeling by Tom Sederberg in his Ph.D. thesis [Sed83], where he applies Dixon's resultant to find the implicit equation for rational surfaces. Since Sederberg's dissertation, applications in geometric modeling of the classical resultants of Dixon, Macaulay, Bezout, and Sylvester have been investigated by many researchers, including Sederberg and Anderson [SAG84], Tiller and Montaudouin [TM84], Manocha and Canny [MC92a, MC92b], Chionh and Goldman [CGM91, CG92], and Bajaj and Abhyankar [BA89].

Applications of algebraic geometry in geometric modeling are now quite common. To give a sense of the broad impact of algebraic geometry on geometric modeling, we list below a few representative samples of the extensive research and numerous researchers in geometric modeling who have used or are currently using algebraic geometry.

- Schwartz and his associates (1983) analyze all the intersections of quadric surfaces for inclusion in solid modeling systems based on classical methods from algebraic geometry [OSS83].
- Warren (1986) studies geometric continuity between algebraic curves and surfaces and then applies his results to find blends between algebraic patches in his Ph.D. thesis [War86].
- Garrity and Warren (1989) build data structures for the intersection curves between algebraic surfaces using techniques adapted from algebraic geometry [GW89].
- Farouki and his collaborators (1989) investigate degenerate intersections of quadric surfaces using the Segre characteristic of a quadratic form [FNO89].
- Hoffmann (1989) uses Groebner bases to solve polynomial equations, find intersections of algebraic surfaces, and locate singularities in his book on solid modeling [Hof96].
- Bajaj and his students (1990) developed the software toolkit GANITH, based on computational algebraic geometry, to assist with geometric modeling applications [BR90].
- Winkler and his collaborators (1991) developed CASA, a computer algebra package for constructive algebraic geometry, that implements the classical analysis of singularities in order to robustly render algebraic curves and surfaces [WGKW91, WHH00].
- Sederberg and Chen (1995) and Zhang, Chionh, and Goldman (2000) explore the use of syzygies for the efficient implicitization of rational surfaces with base points [SC95, ZCG00].
Algebraic geometers have also contributed directly to geometric modeling.
- Abhyankar and Bajaj (1987-1989) collaborated on a series of papers investigating rational parametrizations of curves and surfaces $[\mathbf{A B 8 7 a}, \mathbf{A B 8 7 b}$, AB88, AB89].
- Abhyankar (1990) wrote a book on algebraic geometry specifically for engineers [Abh90].
- Cox, Little, and O'Shea $(1996,1998)$ wrote two books on algebraic geometry that have had a substantial influence on an important segment of the geometric modeling community [CLO96, CLO98].
- Cox (1998-2001) has also lent his expertise to help in the exploration and analysis of syzygies for the efficient implicitization of rational surfaces [Cox01, CZG00].
Recently, geometric modeling has begun to return the favor to algebraic geometry. Computational and numerical issues involving classical resultants have been investigated for the first time by Manocha and Canny [MC92a, MC92b] and by Winkler and Goldman [WG03]. New representations for sparse resultants have been developed by Chionh, Goldman, and Zhang [Chi01, CZG00, ZG00] and also by Zube [Zub00]. Cox, Sederberg, and Chen introduced the notion of a μ-basis for the classification of rational curves [CSC98]. Conjectures on syzygies initiated by geometric modelers [CZG00, SC95] have recently been proved by algebraic geometers [CZG00, D'A01].

The first wave of interactions between algebraic geometry and geometric modeling - spanning roughly the years from 1983-1995 - focused mainly on classical
algebraic geometry: standard resultants, complex projective spaces, conic sections and quadric surfaces, intersections, and singularities. Building on these past successes, we decided in light of some recent new developments in both fields to initiate a second wave of synergy between these two research communities focusing this time on modern algebraic geometry, including sparse resultants, toric varieties, and real algebraic geometry.

In the summer of 2002 , NSF sponsored a four day workshop on algebraic geometry and geometric modeling in Vilnius, Lithuania. The primary purpose of this workshop was to bring together some of the top people in these two research communities in order to examine a broad range of themes of interest to both fields. Vilnius was chosen as the site of this workshop because a strong group of mathematicians and computer scientists working at Vilnius University had taken the lead in investigating applications of toric varieties to geometric modeling [KK99, Kra97, Kra01, Kra02, Zub00]. By holding the workshop in Vilnius, we hoped to strengthen not only the links between the algebraic geometry and geometric modeling communities, but also the ties between researchers in the USA and researchers in Eastern Europe.

The organizers of the workshop had several goals. We wanted to reinvigorate geometric modeling by bringing to bare more recent developments from algebraic geometry. We also hoped to interest algebraic geometers in problems that arise in geometric modeling. We felt too that there are some important insights that geometric modeling could contribute to algebraic geometry. But before we could accomplish any of these goals, people from the two disciplines needed to talk to each other, to understand each others languages, problems, tools, and requirements. To foster these objectives, we included survey talks and tutorials as well as papers on basic research.

This volume is an outgrowth of the Vilnius Workshop on Algebraic Geometry and Geometric Modeling; most of the papers collected here are based on talks presented at this workshop. The purpose of this book is to provide a service to both communities by bringing the topics addressed at this workshop to a wider audience.

Topics in Algebraic Geometry and Geometric Modeling is divided into five sections:

```
i. Modeling Curves and Surfaces
ii. Multisided Patches
iii. Implicitization and Parametrization
iv. Toric Varieties
    v. Mixed Volume and Resultants
```

In keeping with our goal of forging new links between algebraic geometry and geometric modeling, each section contains papers from both disciplines, though some sections are necessarily weighted more heavily to one or the other of these fields.

Modeling curves and surfaces is one of the primary ambitions of geometric modeling, so we begin with three papers on this general theme. Analysis algorithms for Bezier curves and surfaces, intersection algorithms for conic sections and quadric surfaces, and a new surface modeling paradigm with roots in differential topology are presented here. Much of this material will be familiar to researchers in geometric modeling, but our intention is that this section may serve as a brief introduction
to the field of geometric modeling for researchers in algebraic geometry. We hope too that people in geometric modeling will gain some new insights from some of the fresh perspectives presented here.

Multisided patches are an emerging theme is geometric modeling [KK99, Kra02, War92]. Until recently most of the attention in this field has focused on modeling three sided and four sided patches, but general n-sided patches are often required to fill n-sided holes. Modeling multisided patches is one area where we expect that toric varieties will make an important contribution to geometric modeling. The papers in this section not only survey the current state of the art, but also break some new ground in this domain.

Implicitization and parametrization are fundamental both in geometric modeling and in algebraic geometry. The first two papers in this section deal with a new implicitization method. Initially introduced in geometric modeling for implicitizing surfaces with base points, the method of moving surfaces (or syzygies) can be analyzed rigorously only by invoking powerful techniques from algebraic geometry and commutative algebra. The first two papers presented here discuss what is currently provable about this new method as well as the latest developments in this new technique. The third paper in this section treats approximate implicitization. Approximate implicitization owes as much to approximation theory and numerical analysis as it does to algebraic geometry and geometric modeling, so this paper presents an important attempt to merge insights from several fields. This section closes with a paper that discusses the current state of the art in surface parametrization.

Toric varieties are a major new paradigm in modern algebraic geometry. We observed in Section 1 and Section 2 that toric varieties may have practical applications in geometric modeling to the design of multisided patches. Here we devote an entire section to toric varieties. A tutorial is provided first for the uninitiated, and then three research papers are presented. We hope that this section will serve as an introduction to toric varieties for people in geometric modeling who find it difficult to penetrate the sometimes esoteric literature of algebraic geometry. We also expect that some of the new results presented here will contribute to further developments both in algebraic geometry and in geometric modeling.

Mixed volume and resultants are our final topic. Elimination theory is one of the primary computational tools of classical algebraic geometry, and sparse resultants are their modern incarnation. Some of the latest results on sparse resultants are presented here. The connection between mixed volume and blossoming is discussed in Section 1. In this section the intuition behind the link between mixed volume and the number of roots of polynomial equations is explained; rigorous proofs are also provided. This section closes with a new elimination algorithm for Laurent polynomials together with a new formula for mixed volume. As a special treat, we have included in this section a translation of Minding's 1841 paper On the determination of the degree of an equation obtained by elimination, which foreshadows the modern application of mixed volume. This paper has intellectual as well as historical interest. In a commentary after the paper, the translators explain how Minding's formula relates to the mixed area of lattice polygons. They also explain how this approach relates to the way Newton used Newton polytopes.

The ultimate purpose of this book is to promote closer cooperation between two distinct cultures and disciplines - between algebraic geometers and geometric
modelers, between theoreticians and practitioners, between mathematicians and computer scientists - in order to further the goals and aspirations of both fields. By focusing the attention of these two research communities on problems that are of both theoretical and practical importance, we hope to establish stronger links and longer range ties between these two disparate groups, and to foster as well more focused interdisciplinary research that will have a substantial, long lasting, impact on both fields.

In this spirit of cooperation and with the understanding that much of the difficult work still remains to be done, we urge you to read on, study hard, and enjoy these mathematical meditations!

Ron Goldman
 Rimvydas Krasauskas

Bibliography

[Abh90] S. Abhyankar, Algebraic Geometry for Scientists and Engineers, American Mathematical Society, Providence, Rhode Island, 1990.
[AB87a] S. Abhyankar and C. Bajaj, Automatic parametrization of rational curves and surfaces I: Conics and conicoids, Computer-Aided Design 19 (1987), 11-14.
[AB87b] S. Abhyankar and C. Bajaj, Automatic parametrization of rational curves and surfaces II: Cubics and cubicoids, Computer-Aided Design 19 (1987), 499-502.
[AB88] S. Abhyankar and C. Bajaj, Automatic parametrization of rational curves and surfaces III: Algebraic plane curves, Computer Aided Geometric Design 15 (1988), 309-321.
[AB89] S. Abhyankar and C. Bajaj, Automatic parametrization of rational curves and surfaces IV: Algebraic space curves, Transactions on Graphics 8 (1989), 324-333.
[BA89] C. Bajaj and S. Abhyankar, Computations with algebraic curves, Proceedings: International Symposium on Symbolic and Algebraic Computation, ISSAC88, Lecture Notes in Computer Science, vol. 358, Springer-Verlag, 1989, pp. 279-284.
[BR90] C. Bajaj and A. Royappa, The GANITH algebraic geometry toolkit, Proceedings of the First Annual Conference on the Design and Implementation of Symbolic Computation Systems, Lecture Notes in Computer Science, vol. 429, Springer-Verlag, 1990, pp. 268269.
[BFK84] W. Boehm, G. Farin and J. Kahmann, A survey of curve and surface methods in CAGD, Computer Aided Geometric Design 1 (1984), 1-60.
[Chi01] E.-W. Chionh, Rectangular corner cutting and Dixon A-resultants, Journal of Symbolic Computation 31 (2001), 651-669.
[CGM91] E.-W. Chionh, R. N. Goldman and J. Miller, Using multivariate resultants to find the intersection of three quadric surfaces, Transactions on Graphics 10 (1991), 378-400.
[CG92] E.-W. Chionh and R. N. Goldman, Using multivariate resultants to find the implicit equation of a rational surface, The Visual Computer 8 (1992), 171-180.
[CZG00] E.-W. Chionh, M. Zhang and R. N. Goldman, Implicitization by Dixon A-resultants, Proceedings of Geometric Modeling and Processing 2000, Hong Kong, April 2000, pp. 310-318.
[Cox01] D. Cox, Equations of parametric curves and surfaces via syzygies, Symbolic Computation, Solving Equations in Algebra, Geometry, and Engineering, edited by R. Laubenbacher and V. Powers, Contemporary Mathematics, AMS, Providence, RI, 2001.
[CLO96] D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms, Second Addition, Graduate Texts in Mathematics, Springer-Verlag, New York, 1996.
[CLO98] D. Cox, J. Little and D. O'Shea, Using Algebraic Geometry, Graduate Texts in Mathematics, Springer-Verlag, New York, 1998.
[CSC98] D. Cox, T. Sederberg and F. Chen, The moving line ideal basis of planar rational curves, Computer Aided Geometric Design 15 (1998), 803-827.
[CZG00] D. Cox, M. Zhang and R. N. Goldman, On the validity of implicitization by moving quadrics for rational surfaces with no base points, Journal of Symbolic Computation 29 (2000), 419-440.
[D'A01] C. D'Andrea, Resultants and moving surfaces, Journal of Symbolic Computation 31 (2001), 585-602.
[FNO89] R. Farouki, C. Neff and M. O'Connor, Automatic parsing of degenerate quadric surface intersections, Transactions on Graphics 8 (1989), 174-203.
[GW89] T. Garrity and J. Warren, On computing the intersection of a pair of algebraic surfaces, Computer Aided Geometric Design 6 (1989), 137-153.
[Hof96] C. Hoffmann, Geometric and Solid Modeling: An Introduction, Morgan Kaufmann, San Mateo, California, 1989.
[KK99] K. Karciauskas and R. Krasauskas, Comparison of different multi-sided patches using algebraic geometry, Curve and Surface Design: Saint Malo, 1999, edited by Laurent, P.J., Sablonniere, P., and Schumaker, L., Vanderbilt University Press, Nashville, Tennessee, 1999, pp. 163-172.
[Kra97] R. Krasauskas, Universal parameterizations of some rational surfaces, Curves and Surfaces with Applications in CAGD, Edited by A. Le Mehaute, C. Rabut, and L. Schumaker, Vanderbilt University Press, Nashville, Tennessee, 1997, pp. 231-238.
[Kra01] R. Krasauskas, Shape of toric surfaces, Proceedings of the Spring Conference on Computer Graphics SCCG 2001, edited by R. Durikovic, S. Czanner, IEEE, 2001, pp. 55-62.
[Kra02] R. Krasauskas, Toric surface patches, Advances in Computational Mathematics 17 (2002), 83-113.
[MC92a] D. Manocha and J. Canny, The implicit representation of rational parametric surfaces, Journal of Symbolic Computation 13 (1992), 485-510.
[MC92b] D. Manocha and J. Canny, Algorithms for implicitizing rational parametric surfaces, Computer Aided Geometric Design 9 (1992), 25-50.
[OSS83] S. Ocken, J. Schwartz and M. Sharir, Precise implementation of CAD primitives using rational parametrizations of standard surfaces, Tech. Rept. No. 67, Comp. Sci. Dept., New York Univ., New York, 1983.
[Sed83] T. W. Sederberg, Implicit and Parametric Curves and Surfaces for Computer Aided Geometric Design, Ph.D. Thesis, Department of Mechanical Engineering, Purdue University, 1983.
[SAG84] T. W. Sederberg, D. C. Anderson and R. N. Goldman, Vector elimination: A technique for the implicitization, inversion, and intersection of planar parametric rational polynomial curves, Computer Aided Geometric Design 1 (1984), 327-356.
[SC95] T. W. Sederberg, and F. Chen, Implicitization using moving curves and surfaces, Computer Graphics Annual Conference Series, 1995, pp. 301-308.
[TM84] W. Tiller and Y. Montaudouin, The Cayley method in computer aided geometric design, Computer Aided Geometric Design 1 (1984), 309-326.
[War86] J. Warren, On Algebraic Surfaces Meeting with Geometric Continuity, Ph.D. Thesis, Department of Computer Science, Cornell University, 1986.
[War92] J. Warren, Creating multisided rational Bezier surfaces using base points, Transactions on Graphics 11 (1992), 127-139.
[WGKW91] F. Winkler, R. Gebauer, M. Kalkbrener, and B. Wall, CASA: A computer algebra package for constructive algebraic geometry, Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation (ISSAC), 1991, pp. 403-410.
[WHH00] F. Winkler, R. Hemmecke, and E. Hillgarter, The CASA System, Handbook of Computer Algebra: Foundations, Applications, Systems, Springer-Verlag, 2000.
[WG03] J. Winkler and R. Goldman, The Sylvester resultant matrix for Bernstein polynomials, accepted to appear in the Proceedings of the Fifth International Conference on Curves and Surfaces, St. Malo, France, July 2002.
[ZCG00] M. Zhang, E. W. Chionh, and R. N. Goldman, Efficient implicitization of rational surfaces by moving planes, Proceedings of the Fourth Asian Symposium on Computer Mathematics (ASCM 2000), Chiang Mai, Thailand, December 2000, Lecture Notes Series on Computing, vol. 8, Computer Mathematics, World Scientific, Singapore, 2000, pp. 142-151.
[ZG00] M. Zhang and R. N. Goldman, Rectangular corner cutting and Sylvester A-resultants, Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (ISSAC), St. Andrews University, Scotland, 2000, pp. 301-308.
[Zub00] S. Zube, The n-sided toric patches and A-resultants, Computer Aided Geometric Design 17 (2000), 695-714.

Index

1-parameter subgroup, 205
Δ-monomial, 220, 245
Σ_{Δ}-irreducible, 248
μ-basis, 133
special, 149
adjoints, 191
affine space, 203
approximate implicitization, 169
accuracy, 177
convergence rate, 176
weak form, 180
automobile design, 56
barycentric coordinates, $11,12,14,93,174$
facial behavior, 95
linear precision, 94
non-negative, 93
uniqueness, 96
base point, 103, 135, 140, 230
conditions imposed by, 144
degree of, 141, 164
differential conditions for, 167
multiplicity of, 141, 164
rectangular $k \times l$-ple, 155,162
triangular k-ple, 155, 162
Bernstein basis, 4, 7, 22, 170
bivariate, 12
Bernstein coefficients, 4-7, 13, 20, 22
Bernstein polynomial
depth of, 80
for lattice polygon, 71, 72
properties of, 71
Bernstein's theorem, 14-16, 293, 310, 311, $313,315,317,318$
Bernstein, D. N., 308, 317
Bernstein-Bézier form, 41
Bézier control points, 4, 6, 7, 11, 12
See also control point
Bézier curve, 4, 6-8, 10, 11, 226, 231
Bézier patch, 226, 231
rectangular, 80
tensor product, 14, 80
toric, 73
triangular, 11, 12
Bézier surface, 10, 13
See also Bézier patch
Bézout's formula, 194
Bézout's theorem, 294, 310, 313
bezoutian, 329
bicubic patch, 157
binomial system, 296-299, 316
BKK bound, 355
affine case, 360
genericity assumptions, 361
blending, 44
blending functions, $40,42,152$
blossom, 3, 4-14, 16, 20-24
affine blossom, 9
homogeneous blossom, 9, 13, 14, 16
blossoming, 3-14
blossoming axioms, 4, 10, 14
of toric Bézier patch, 84
blow-up of the origin, 215
blowing-up, 103
T-equivariant, 270
Castelnuovo's criterion, 190
categorical quotient, 214, 217
Cayley trick, 305
cell, 358
mixed, 359
unmixed, 359
character, 204
characteristic polynomial, 26, 30
collision detection
for conics, 26,27
for quadrics, 28
combinatorial coefficient, 344
cone
dimension of, 206
dual of, 207
edge of, 206
face of, 206
facet of, 206
maximal, 212
rational polyhedral, 206
simplicial, 212
smooth, 212
strongly convex, 206
control point, 40, 43, 102, 229, 231
See also Bézier control points convergence rate
approximate implicitization, 176
convex polytope, 93
coordinate ring, 209
corner cutting, 157
de Casteljau algorithm, 5
blossomed version, 6, 20, 21
differentiation, 10
evaluation, 5-7
for mixed volume, 21
for toric Bézier patches, 77
homogenized, 9
pyramid, 13, 22
subdivision, 7
tetrahedral, 11, 14
deficiency values, 154, 164
Del Pezzo surface, 189
depth of polygonal array, 75
derivative ideal, $153,162,166$
differential surface, 39
directional derivative, 40,46
discriminant, 304, 305
dual cone, 207
dual functional property, 6, 13
dual polytope, 219
Ehrhart polynomial, 221
Euler's formula, 162
facet
of a cone, 206
of a polytope, 217
facet variable, 219, 244
fan, 211, 225, 244
normal, 217
normal, of a polytope, 226,236
support of, 212
fat point, 162
genericity, 294, 296, 299, 302, 313
genus, 190
arithmetic, 190
formula, 194
geometric, 190
plurigenus, 190
geometric continuity, 37
geometric quotient, 214
geometric smoothness, 56
geometrically continuous
function, 38, 40, 49, 51
octahedron, 38
rational function, 44
spline, 41
surface complex, 38,50

Gordan's lemma, 207
Gröbner basis, 153
groups generated by real structures, 275
Hilbert polynomial, 133
Hilbert syzygy theorem, 133
implicit degree, 154, 164
implicitization, $90,131,151$
approximate, 169
bezoutian, 335
surface, 330
syzygy, 332, 334
toric patch, 336
incidence variety, 323
index function, 30
intersection, 339
intersection algorithm, 8
intrinsic parametric degree, 194
inverse image, 337
irregularity, 190
Itenberg, I., 317
key function, 105
Khetan, A., 306, 317
Khovanskii, A. G., 317
Kodaira dimension, 190
Koszul complex, 137
Koszul syzygy, 137, 140
Kushnirenko's theorem, 299, 302, 307, 308, 310, 315
Kushnirenko, A. G., 299
lattice point, 207
lattice polygon, 70
lattice polytope, 217
Laurent monomial, 204
Laurent polynomial, 204
linear precision, 239
local complete intersection, 140, 162
M-patch, 68, 104
\mathcal{R}_{m}^{n}-patch, 106
\mathcal{P}_{5}^{n}-patch, 107
\mathcal{U}_{5}^{n}-patch, 106
\mathcal{U}_{6}^{n}-patch, 106
\mathcal{U}_{7}^{n}-patch, 106
\mathcal{U}_{8}^{n}-patch, 106
mass-point, 67, 74
Minding's formula, 353, 355
Minding, F., 311, 351
Minkowski sum, 15, 21, 22, 75
decomposition, 87
mixed area, $313,314,355$
compute via a mixed subdivision, 357
compute via inclusion-exclusion, 357
compute via recursion, 357
definition of, 357
mixed cell, $312,314,315$
mixed subdivision, 312-314, 316, 358
mixed volume, 14-23, 311, 313, 317
axioms, 15
moment map, 238
moving line, 132
moving plane, 135,152
moving quadric, $135,152,332$
moving surface, 152
multi-sided hole, 56, 68
multi-sided patch, 56, 68, 101
M-patch, 68
S-patch, 68, 109
Sabin's patch, 68, 124
toric Bézier patch, 68
multiaffine, 4,11
multiplicative equivalence, 276
multiplicity, 95
nested polygon net, 105
Newton polygon, 70, 156, 355
Newton polytope, 15, 16, 294, 295
Newton, I., 355
non-degenerate configurations
of conics, 32,33
of quadrics, 34
normal fan, 217, 244
normal vector
inward pointing, 206, 217, 357
outward pointing, 357
parametrization, 186, 330
problem, 186
proper, 186
quantitative theory, 193
rational, 246
universal rational, 241, 249, 258
pencil, 187
polar form, 3, 14
polar polytope, 219
polynomial bases, 170
Bernstein basis, 170
primitive element, 206
primitive set of edge generators, 213
principal orbit coordinates, 270
projective space, 67, 204
Puiseux series, 355
with decreasing exponents, $353,356,357$
pure degree surface, 152
quadratic form, 29, 189
index of, 30
quadratic map, 29
classification, 30
non-degenerate, 29
quadric
moving, 152
rational map
to smooth toric variety, 259
rational mapping, 102
rational motion, 26
rational parametrization, 246
universal 241, 249, 258
rational variety, 229, 231
rationality, 186
real part, 267
real structure, 267
canonical real structure, 267
toric real structure, 268,271
multiplicative part, 272
multiplicative real structure, 272
real variety, 267
regularity, 134, 139, 145
for $\mathbb{P}^{1} \times \mathbb{P}^{1}, 139,148,165$
rendering algorithm, 8
reparametrization, 114
residue at a vertex, 346
resultant, 149, 305, 322, 355
anisotropic, 326
bezoutian, 329
projective, 325
residual, 327
sparse, $14,15,90$
toric, 15,327
S-patch, 68, 109
Sabin's patch, 68, 124
saturation, 143, 163, 165
self-intersections, 178
semigroup algebra, 209
separation conditions
for conics, 26
for quadrics, 27,28
Shub, M., 310
simplex, 299, 302, 310
simplification, 186
singularity, 339
spline surface, 55
Steiner surface, 242
subdivision, $4,5,8,13$
subdivision surface, 58
support, 295
surface
artifact, 58
Bézier, 10, 13
See also Bézier patch
curvature, 56
Del Pezzo, 189
fairness, 56
implicitization, 330
moving, 152
spline, 55
Steiner, 242
subdivision, 58
toric, 194
syzygy, 132, 334
vanishes at basepoints, 141
syzygy module, 132
T-equivariant, 269
T-equivariant blowing-up, 270
tangent space, 46,49
tensor product surface, 135,152
See also Bézier patch, tensor product
tensor-border net, 114
tensor-border patch, 68, 114
toric automorphism, 271
elementary toric automorphism, 270
multiplicative automorphism, 270
toric Bézier patch, 68, 73
blossoming of, 84
boundaries of, 80
degree elevation, 87
differentiating of, 82
parametric degree, 89
See also toric patch
toric deformation, 300,315
toric equivalence, 279
toric ideal, 208, 227
toric patch, 229, 231, 239, 336
See also toric Bézier patch
toric surface, 194
toric variety, 204, 225, 231
abstract, 211
affine, 207
compact, 212, 244
homogeneous coordinate ring, 215, 244
homogeneous coordinates, 212
of a polytope, 217
projective, 218, 244
quotient representation, 214
real, 234
simplicial, 212
smooth, 212
torus, 204
triangular surface, 138
See also Bézier patch, triangular
triangulation, 301, 302
unimodular transformation, 74
universal rational parametrization, 241, 249, 258
singular case, 258
smooth case, 249
unmixed, 299, 305, 308, 313
variety
abstract, 211
affine, 203
irreducible, 204
normal, 209
projective, 204
toric, 204
vertex monomial, 219
volume, $14,16,21,22,295,299,308,312$, 313

Algebraic geometry and geometric modeling both deal with curves and surfaces generated by polynomial equations. Algebraic geometry investigates the theoretical properties of polynomial curves and surfaces; geometric modeling uses polynomial, piecewise polynomial, and rational curves and surfaces to build computer models of mechanical components and assemblies for industrial design and manufacture.
The NSF sponsored the four-day "Vilnius Workshop on Algebraic Geometry and Geometric Modeling", which brought together some of the top experts in the two research communities to examine a wide range of topics of interest to both fields. This volume is an outgrowth of that workshop. Included are surveys, tutorials, and research papers. In addition, the editors have included a translation of Minding's 1841 paper, "On the determination of the degree of an equation obtained by elimination", which foreshadows the modern application of mixed volumes in algebraic geometry.
The volume is suitable for mathematicians, computer scientists, and engineers interested in applications of algebraic geometry to geometric modeling.

