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Preface 

The papers in this volume are loosely based around the major themes of the 
AMS/ ASL Joint Special Session "Interactions Between Logic, Group Theory and 
Computer Science" held in Baltimore, MD, in January 2003. The preliminary 
versions of most of them were reported at the session. We wish to express our 
thanks to the American Mathematical Society and the Association for Symbolic 
Logic for their invitation to organize the session and their support, which allowed 
this unusual interdisciplinary meeting to take place. 

Since the pioneering works of Novikov and Maltsev, group theory has been a 
testing ground for mathematical logic in its many manifestations, from the theory 
of algorithms to model theory. This interaction between logic and group theory 
led to many prominent results which enriched both disciplines. In this volume we 
collect under one cover several papers that discuss the first attempts to develop a 
similar interaction between group theory and computer science. 

The papers reflect the paradigm change in algorithmic group theory. Since 
its origin in works by Dehn in the early 20th century, combinatorial group theory 
has been primarily concerned with algorithms for solving particular problems on 
groups given by generators and relations: word problems, conjugacy problems, iso-
morphism problems, etc. Recent years have seen the focus of algorithmic group 
theory shift from the decidabiliy /undecidability type of results to complexity of 
algorithms. Also, a non-deterministic approach to computation on groups started 
to play a prominent role, especially in the theory of black box groups. The works 
presented in this volume are concerned with even less traditional approaches to 
computation on groups: quantum computing, pattern recognition, genetic algo-
rithms. New approaches mean, of course, new models of computation and new 
concepts of complexity. 

The first paper in the volume, by Michael Batty, Samuel Braunstein, Andrew 
Duncan and Sarah Rees, is a detailed survey of the state of the art in the design 
of quantum algorithms on groups. Although quantum computers still do not exist 
in real life, they provide an exciting new model of computation, with the main 
impact on complexity theory. Indeed, it can be seen that a quantum computer can 
be simulated on a classical computer (albeit very slowly), so quantum computing 
does not change the classical decidable/undecidable boundary. Instead, the main 
issue is, how wide is the class of classical algorithms and problems amenable to the 
exponential speed up promised by quantum computing? Starting from Shor's sem-
inal work on prime factorization, group theory is playing an increasingly important 
part in providing such algorithms. 

Two further papers, by Richard Booth, Dmitry Bormotov and Alexandre 
Borovik, and by Alex Miasnikov and Alexei Myasnikov, discuss group-theoretic 
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viii PREFACE 

applications of genetic (evolutionary) algorithms. In brief, a genetic algorithm is 
a search strategy for finding an optimal value in the space of all possible values. 
Being inspired by natural evolution, it treats the set of approximate solutions as 
a population that evolves from generation to generation by mutation and breeding 
(crossover) and, crucially, under the action of selection operators. The latter are 
biased towards individuals with better values of the fitness function, which, ideally, 
should ensure that evolution eventually-and the sooner the better-produces an 
individual with the optimal value of the fitness function. 

Booth, Bormotov and Borovik use genetic algorithms for solving equations in 
free groups and free semigroups. Besides solving equations which previously were 
not susceptible to known methods, genetic algorithms for solving equations in free 
groups exhibit a remarkable property: it is possible to trace how a co-evolution of 
the population of fitness function converges to a deterministic solution. A short 
paper by Gilman and Myasnikov exploits the theory of context-free languages to 
describe the structure of solution sets of equations in one variable over free groups. 
In particular, their paper provides insight into the reasons for efficiency of genetic 
algorithms for this particular problem. 

Miasnikov and Myasnikov developed a genetic version of the classical White-
head's algorithm for the automorphic conjugacy problem on free groups. (See 
Section 2 of their paper for a concise introduction to Whitehead's problem.) The 
experimental data show that genetic algorithms are much more efficient than the 
classical deterministic Whitehead's algorithm (which has exponential time complex-
ity). The main conclusion of the paper is that this surprisingly good performance 
strongly suggests that, although the worst-case complexity of Whitehead's problem 
might be exponential, it is likely to have low "average" complexity or low "generic" 
complexity. It also gives strong evidence to the existence of a very efficient determin-
istic algorithm. This experimental study has already outspun theoretical research 
(to be published elsewhere) aimed at the explanation of observed phenomena. 

The prominent role of certain graphs associated with the automorphic orbits 
of elements in the free group is already apparent in the paper by Miasnikov and 
Myasnikov. The next paper, by Bilal Khan, is devoted to a detailed study of these 
Whitehead graphs in the free group of rank 2 which leads to a quadratic bound for 
complexity of Whitehead's algorithm. Although theoretical by its nature, Khan's 
work would never have advanced that far without the use of sophisticated software 
tools for visualization and statistical analysis of graphs. 

The last two papers, by Haralick, Miasnikov and Myasnikov, and by Bormotov, 
show how the industrial machinery of pattern recognition can be applied to the 
classical and rather subtle problem of automorphic conjugacy in the free group F2 . 

Some standard methods of pattern recognition have turned out to be very efficient 
in recognizing primitive and Whitehead minimal elements in F2 . Here, a Whitehead 
minimal element is an element of minimal length with respect to its orbit under 
the action of Aut(F2 ). 

Alexandre Borovik and Alexei Myasnikov 
December 2003 
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