AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution
Mathematical Studies in Nonlinear Wave Propagation
About this Title
Dominic P. Clemence and Guoqing Tang, Editors
Publication: Contemporary Mathematics
Publication Year:
2005; Volume 379
ISBNs: 978-0-8218-3349-0 (print); 978-0-8218-7969-6 (online)
DOI: https://doi.org/10.1090/conm/379
MathSciNet review: 2145151
Table of Contents
Download chapters as PDF
Front/Back Matter
Articles
- Ronald E. Mickens – An introduction to wave equations [MR 2149043]
- Martin Klaus – On the Zakharov-Shabat eigenvalue problem [MR 2149044]
- Tuncay Aktosun – Solitons and inverse scattering transform [MR 2149045]
- Jianke Yang – A tail-matching method for the linear stability of multi-vector-soliton bound states [MR 2149046]
- R. H. Goodman, R. E. Slusher, M. I. Weinstein and M. Klaus – Trapping light with grating defects [MR 2149047]
- Bolindra N. Borah – Thermo-elastic-plastic transition [MR 2149048]
- Alexandra B. Smirnova – Regularized quasi-Newton method with continuous inversion of $F’+\epsilon I$ for monotone ill-posed operator equations [MR 2149049]
- Wenzhang Huang – Transition layers for a singularly perturbed neutral delay differential equation [MR 2149050]
- Ching Y. Loh – Nonlinear aeroacoustics computations by the CE/SE method [MR 2149051]
- S. C. Chang, A. Himansu, C. Y. Loh, X. Y. Wang and S. T. Yu – Robust and simple non-reflecting boundary conditions for the Euler equations—a new approach based on the space-time CE/SE method [MR 2149052]
- G. Tang, D. Clemence, C. Jackson, Q. Lin and V. Burbach – Physical and numerical modeling of seismic wave propagation [MR 2149053]