Special Functions and Orthogonal Polynomials

AMS Special Session
on Special Functions and Orthogonal Polynomials
April 21–22, 2007
Tucson, Arizona

Diego Dominici
Robert S. Maier
Editors
Special Functions and Orthogonal Polynomials

AMS Special Session
on Special Functions and Orthogonal Polynomials
April 21–22, 2007
Tucson, Arizona

Diego Dominici
Robert S. Maier
Editors

American Mathematical Society
Providence, Rhode Island

Includes bibliographical references.
ISBN 978-0-8218-4650-6 (alk. paper)

QA351.S695 2008
515'.5—dc22 2008022201

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)

© 2008 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Copyright of individual articles may revert to the public domain 28 years after publication. Contact the AMS for copyright status of individual articles.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
Contents

Preface v

Fractional integration and fractional differentiation for d-dimensional Jacobi expansions

Cristina Balderrama and Wilfredo O. Urbina R. 1

Sutherland-type trigonometric models, trigonometric invariants, and multivariate polynomials

K. G. Boreskov, A. V. Turbiner, and J. C. López Vieyra 15

Polynomials associated with partitions: Asymptotics and zeros

Robert P. Boyer and William M. Y. Goh 33

A generating function for the N-soliton solutions of the Kadomtsev–Petviashvili II equation

Sarbarish Chakravarty and Yuji Kodama 47

Asymptotics of the second Painlevé equation

Peter A. Clarkson 69

Evaluation of certain Mellin transformations in terms of the trigamma and polygamma functions

Mark W. Coffey 85

Conformal maps to generalized quadrature domains

Darren Crowdy and Jonathan Marshall 105

Approximations for zeros of Hermite functions

Árpád Elbert and Martin E. Muldoon 117

Inequalities and bounds for elliptic integrals II

Haseeb Kazi and Edward Neuman 127

P-symbols, Heun identities, and $3F_2$ identities

Robert S. Maier 139

An iterative method for numerical integration of rational functions

Dante Manna and Victor H. Moll 161

A Taylor expansion theorem for an elliptic extension of the Askey–Wilson operator

Michael J. Schlosser 175

Ramanujan’s symmetric theta functions in his Lost Notebook

Seung H. Son 187
Integral representations for products of Airy functions and their fractional derivatives

VLADIMIR VARLAMOV

203
Preface

This volume contains articles by speakers in the AMS Special Session on Special Functions and Orthogonal Polynomials, held on 21–22 April, 2007 at the campus of the University of Arizona in Tucson. (Details of this special session are available at the AMS website.) The articles cover a wide range of topics in the theory of special functions, and the related theory of orthogonal polynomials. The authors include pure mathematicians, applied mathematicians, and theoretical physicists. A few of the articles have an expository flavor, but original research predominates.

Although there is no formal definition or comprehensive list of “special functions,” most mathematicians, physicists, and engineers will agree on which functions belong to this category. This is because most of the classical special functions arose as solutions of problems in applied mathematics and physics. For this reason, Turán and Askey have suggested calling them “useful functions.” Well-known useful ones include the Bessel functions (useful, e.g., in Kepler’s problem), Legendre polynomials (useful, e.g., in the attraction of ellipsoids), Airy functions (useful, e.g., in the theory of rainbows), parabolic cylinder functions, etc. In recent decades the list has been extended, and special functions have increasingly received the attention of pure mathematicians.

This is the first overview of the modern field of special functions to appear in the Contemporary Mathematics series. All major subfields are represented, including applications to algebraic geometry, the theory of nonlinear waves, and conformal mapping; hypergeometric and q-hypergeometric series, and theta functions; elliptic functions; combinatorial generating functions; fractional calculus; the symbolic and numerical evaluation of integrals; and asymptotic analysis. Our hope is that the volume gives a true picture of the vitality of the field. This vitality is reflected in the large number of research papers appearing each year, and the increasing number of related conferences.

As co-organizers and editors, we thank all participants and contributors. We are grateful to the American Mathematical Society for assistance in organizing the special session, and in the publication of this volume. We especially thank Christine Thivierge of the AMS staff, for her efficient support in the latter.

Diego Dominici
Robert S. Maier
This volume contains fourteen articles that represent the AMS Special Session on Special Functions and Orthogonal Polynomials, held in Tucson, Arizona in April of 2007. It gives an overview of the modern field of special functions with all major subfields represented, including: applications to algebraic geometry, asymptotic analysis, conformal mapping, differential equations, elliptic functions, fractional calculus, hypergeometric and q-hypergeometric series, nonlinear waves, number theory, symbolic and numerical evaluation of integrals, and theta functions. A few articles are expository, with extensive bibliographies, but all contain original research.

This book is intended for pure and applied mathematicians who are interested in recent developments in the theory of special functions. It covers a wide range of active areas of research and demonstrates the vitality of the field.