Mathematics, Developmental Biology and Tumour Growth

UIMP–RSME Lluís A. Santaló Summer School
September 11–15, 2006
Universidad Internacional Menéndez Pelayo,
Santander, Spain

Fernando Giráldez
Miguel A. Herrero
Editors

American Mathematical Society
Real Sociedad Matemática Española
Mathematics, Developmental Biology and Tumour Growth
Mathematics, Developmental Biology and Tumour Growth

UIMP–RSME Lluis A. Santaló Summer School
September 11-15, 2006
Universidad Internacional Menéndez Pelayo,
Santander, Spain

Fernando Giráldez
Miguel A. Herrero
Editors
Contents

Preface vii

Developmental Biology and Mathematics: The Rules of an Embryo
BERTA ALSINA, ADRIÁN L. GARCÍA DE LOMANA, JORDI VILLÀ-FREIXA
AND FERNANDO GIRÁLDEZ 1

From Lineage to Shape: Modeling Dorsal-Ventral Specification in the
Developing Mouse Limb
CARLOS G. ARQUES AND MIGUEL TORRES 13

Notch-Mathics
RITA FIOR AND DOMINGOS HENRIQUE 27

Modelling Tumour-Induced Angiogenesis: A Review of Individual-Based
Models and Multiscale Approaches
TOMÁS ALARCÓN 45

Tumour Radiotherapy and Its Mathematical Modelling
ANTONIO CAPPUCCIO, MIGUEL A. HERRERO AND LUIS NUÑEZ 77

Multiphase and Individual Cell-Based Models of Tumour Growth
J. GALLE AND L. PREZIOSI 103
Preface

This volume contains a number of selected survey papers on the topics presented and discussed at the “Lluís A. Santaló Summer School”, that was devoted to Mathematics of Development and Cancer. The School was held in Santander (Spain) on September 11–15, 2006, as part of the activities of the Universidad Internacional Menéndez Pelayo (UIMP), in collaboration with the Real Sociedad Matemática Española (RSME). Lecturers came from different scientific fields, including Biology, Mathematics, Medicine and Physics. They were selected in an attempt to present an outline of ongoing research in selected areas of mathematics and biology, in a manner that could be widely accessible to an audience consisting mainly of advanced undergraduates and graduate students on Mathematics. These were thus given a front seat at the research currently done by a number of groups worldwide working in Biology and Mathematics. The course was centred on Developmental Biology and Tumour Growth. These are topics where Mathematics is increasingly being used as a new and powerful technique to gain new insights. Mathematics is in its turn receiving a significant scientific pay-off in the form of new and challenging mathematical problems to be added to their own ones.

For instance, Developmental Biology is an area of basic research in Biology and Medicine that has fascinated mankind since the earliest recorded scientific thought. Developmental Biology, which has experienced a great impulse during last years, deals with the basic problem of understanding the unfolding of utterly complex living structures “from egg to embryo”. In this manner, it has been seen to raise a number of challenging quantitative problems that immediately appeal at the imagination of mathematicians. This is the case of some central problems in Biology related to pattern formation, where the issue of how space and time evolution is first coded in the genome, and then set in action during development, has generated a great interest in the use of mathematical tools.

The first part of this volume contains three views on different aspects of Developmental Biology as seen with the eyes of biologists interested in incorporating Mathematics to their technical tools. More precisely, Alsina et al. summarise the state of the art in Developmental Biology by describing some of the basic questions in the field, and by commenting on some examples of formal approaches to the specific problem of patterning in development. Arques and Torres describe the problem of how three dimensional patterns are established in the limbs of vertebrates, and show how an interesting model on mesenchymal compartments formation can be derived from a clever clonal analysis of cell lineages. Finally, Henrique and Fior discuss on one of the key signalling pathways in development, the Notch pathway, a subject on which a good deal of work is being currently done both by biologists and mathematicians.
On the other hand, Cancer Research is a major priority in health care and a challenge to the scientific community as a whole. Cancer is a complex biological process that raises issues in Genetics, Cell Differentiation, Environmental Sciences, Immunology, Pharmacology, Physics,... to mention but a few active fields of scientific endeavour. Interdisciplinary research is thus a growing need of mathematicians working along physicians and biologists in order to develop models and new therapeutic approaches.

In this volume, the reader will find contributions by Alarcón, Cappuccio, Herrero and Núñez, and Galle and Preziosi, all of them dealing with the mathematical modelling and subsequent analysis of problems related to Tumour Growth. More precisely, Alarcón provides an updated account of current views on angiogenesis, the formation of new blood vessels from a preexisting vasculature, which is known to play a key role in many types of tumour progression. Cappuccio et al. give an overview of modelling issues arising in radiotherapy, a commonly used technique to treat a number of malignant (and also benign) tumours. On their turn, Galle and Preziosi present a comprehensive picture of tumour growth insisting on individual cell-aspects and their relation to a multiphase -fluid flow picture of that process.

The book is addressed to PhD students and advanced undergraduate students in sciences willing to start their research in the exciting, and as yet unchartered, interface among Biology and Mathematics. There is a widely perceived interest in finding common spaces for discussion between mathematical and biological sciences, and this volume is expected to provide a contribution to that goal. The aim was at presenting an updated view on some basic problems of Biology, and to illustrate how Mathematics may help to improve knowledge on some of them. It goes without saying that the choice of topics has no claim to be exhaustive, and that the authors are fully aware that many interesting subjects have been left out of the selection herein made.

The editors wish to thank the RSME for giving them the opportunity to plan the School from which this work has unfolded. Our thanks also go to the UIMP, which provided excellent organization, and outstanding facilities, to organise the series of lectures which are at the origin of this book.

Fernando Giráldez and Miguel A. Herrero
Titles in This Series

492 Fernando Giráldez and Miguel A. Herrero, Editors, Mathematics, developmental biology and tumour growth, 2009
491 Carolyn S. Gordon, Juan Tirao, Jorge A. Vargas, and Joseph A. Wolf, Editors, New developments in Lie theory and geometry, 2009
490 Donald Babbitt, Vyjayanthi Chari, and Rita Fioresi, Editors, Symmetry in mathematics and physics, 2009
489 David Ginzburg, Erez Lapid, and David Soudry, Editors, Automorphic Forms and L-functions II. Local aspects, 2009
488 David Ginzburg, Erez Lapid, and David Soudry, Editors, Automorphic forms and L-functions I. Global aspects, 2009
487 Gilles Lachaud, Christophe Ritzenthaler, and Michael A. Tsfasman, Editors, Arithmetical cryptography and coding theory, 2009
486 Frédéric Mynard and Elliott Pearl, Editors, Beyond topology, 2009
485 Idris Assani, Editor, Ergodic theory, 2009
484 Motoko Kotani, Hisashi Naito, and Tatsuya Tate, Editors, Spectral analysis in geometry and number theory, 2009
483 Vyacheslav Futorny, Victor Kac, Iryna Kashuba, and Efim Zelmanov, Editors, Algebras, representations and applications, 2009
482 Kazem Mahdavi and Deborah Koslover, Editors, Advances in quantum computation, 2009
481 Aydın Aytuna, Reinhold Meise, Tosun Terzioğlu, and Dietmar Vogt, Editors, Functional analysis and complex analysis, 2009
479 Timothy Y. Chow and Daniel C. Isaksen, Editors, Communicating mathematics, 2008
478 Zongzhu Lin and Jianpan Wang, Editors, Representation theory, 2008
477 Ignacio Luengo, Editor, Recent Trends in Cryptography, 2008
476 Carlos Villegas-Blas, Editor, Fourth summer school in analysis and mathematical physics: Topics in spectral theory and quantum mechanics, 2008
475 Jean-Paul Brasselet, José Luis Cisneros-Molina, David Massey, José Seade, and Bernard Teissier, Editors, Singularities II: Geometric and topological aspects, 2008
474 Jean-Paul Brasselet, José Luis Cisneros-Molina, David Massey, José Seade, and Bernard Teissier, Editors, Singularities I: Algebraic and analytic aspects, 2008
473 Alberto Farina and Jean-Claude Saut, Editors, Stationary and time dependent Gross-Pitaevskii equations, 2008
471 Diego Dominici and Robert S. Maier, Editors, Special functions and orthogonal polynomials, 2008
469 Keith Burns, Dmitri Dolgopyat, and Yakov Pesin, Editors, Geometric and probabilistic structures in dynamics, 2008
468 Bruce Gilligan and Guy J. Roos, Editors, Symmetries in complex analysis, 2008
466 Boo Cheong Khoo, Zhilin Li, and Ping Lin, Editors, Moving interface problems and applications in fluid dynamics, 2008
Valery Alexeev, Arnaud Beauville, C. Herbert Clemens, and Elham Izadi, Editors, Curves and Abelian varieties, 2008

Kristin E. Lauter and Kenneth A. Ribet, Editors, Computational arithmetic geometry, 2008

Gary L. Mullen, Daniel Panario, and Igor Shparlinski, Editors, Finite fields and applications, 2008

Megumi Harada, Yael Karshon, Mikiya Masuda, and Taras Panov, Editors, Toric topology, 2008

Marcelo J. Saia and José Seade, Editors, Real and complex singularities, 2008

S. K. Jain and S. Parvathi, Editors, Noncommutative rings, group rings, diagram algebras and their applications, 2008

Mark Agranovsky, Daoud Bshouty, Lavi Karp, Simeon Reich, David Shoikhet, and Lawrence Zalcman, Editors, Complex analysis and dynamical systems III, 2008

Matthias Beck, Christian Haase, Bruce Reznick, Michèle Vergne, Volker Welker, and Ruriko Yoshida, Editors, Integer points in polyhedra, 2008

David R. Larson, Peter Massopust, Zuhal Nashed, Minh Chuong Nguyen, Manos Papadakis, and Ahmed Zayed, Editors, Frames and operator theory in analysis and signal processing, 2008

Giuseppe Dito, Ji-Huan Lu, Yoshiaki Maeda, and Alan Weinstein, Editors, Poisson geometry in mathematics and physics, 2008

Alberto Corso, Juan Migliore, and Claudia Polini, Editors, Algebra, geometry and their interactions, 2007

François Germinet and Peter Hislop, Editors, Adventures in mathematical physics, 2007

Laura De Carli and Mario Milman, Editors, Interpolation Theory and Applications, 2007

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
Developmental biology and tumour growth are two important areas of current research where mathematics increasingly provides powerful new techniques and insights. The unfolding complexity of living structures from egg to embryo gives rise to a number of difficult quantitative problems that are ripe for mathematical models and analysis. Understanding this early development process involves the study of pattern formation, which mathematicians view through the lens of dynamical systems. This book addresses several issues in developmental biology, including Notch signalling pathway integration and mesenchymal compartment formation.

Tumour growth is one of the primary challenges of cancer research. Its study requires interdisciplinary approaches involving the close collaboration of mathematicians, biologists and physicians. The summer school addressed angiogenesis, modelling issues arising in radiotherapy, and tumour growth viewed from the individual cell and the relation to a multiphase-fluid flow picture of that process.

This book is suitable for researchers, graduate students, and advanced undergraduates interested in mathematical methods of developmental biology or tumour growth.