# AMS eBook CollectionsOne of the world's most respected mathematical collections, available in digital format for your library or institution

# Vertex Operator Algebras and Related Areas

### About this Title

**Maarten Bergvelt**, **Gaywalee Yamskulna** and **Wenhua Zhao**, Editors

Publication: Contemporary Mathematics

Publication Year
2009: Volume 497

ISBNs: 978-0-8218-4840-1 (print); 978-0-8218-8176-7 (online)

DOI: http://dx.doi.org/10.1090/conm/497

MathSciNet review: 2568393

### Table of Contents

**Front/Back Matter**

**Articles**

- Dražen Adamović and Antun Milas – An analogue of modular BPZ-equation in logarithmic (super)conformal field theory [MR 2568395]
- P. Bantay – Vector-valued modular forms [MR 2568396]
- Katrina Barron – Alternate notions of $N=1$ superconformality and deformations of $N=1$ vertex superalgebras [MR 2568397]
- Alex J. Feingold, Axel Kleinschmidt and Hermann Nicolai – Hyperbolic Weyl groups and the four normed division algebras [MR 2568398]
- Matthias R. Gaberdiel and Terry Gannon – Zhu’s algebra, the $C_2$ algebra, and twisted modules [MR 2568399]
- Christopher Goff – Fusion algebras for vertex operator algebras and finite groups [MR 2568400]
- Michael E. Hoffman – Rooted trees and symmetric functions: Zhao’s homomorphism and the commutative hexagon [MR 2568401]
- Yi-Zhi Huang – Representations of vertex operator algebras and braided finite tensor categories [MR 2568402]
- Miroslav Jerković – Recurrences and characters of Feigin-Stoyanovsky’s type subspaces [MR 2568403]
- Ching Hung Lam and Hiroshi Yamauchi – The FLM conjecture and framed VOA [MR 2568404]
- Haisheng Li – On quantum vertex algebras and their modules [MR 2568405]
- Andrew R. Linshaw – Introduction to invariant chiral differential operators [MR 2568406]
- Frédéric Patras – Dynkin operators and renormalization group actions in pQFT [MR 2568407]
- Thomas J. Robinson – New perspectives on exponentiated derivations, the formal Taylor theorem, and Faà di Bruno’s formula [MR 2568408]
- Goran Trupčević – Combinatorial bases of Feigin-Stoyanovsky’s type subspaces for $\tilde {\mathfrak {sl}}_{l+1}(\Bbb C)$ [MR 2568409]
- Michael P. Tuite – Exceptional vertex operator algebras and the Virasoro algebra [MR 2568410]