Operator Structures and Dynamical Systems
About this Title
Marcel de Jeu, Sergei Silvestrov, Christian Skau and Jun Tomiyama, Editors
Publication: Contemporary Mathematics
Publication Year
2009: Volume 503
ISBNs: 978-0-8218-4747-3 (print); 978-0-8218-8182-8 (online)
DOI: http://dx.doi.org/10.1090/conm/503
MathSciNet review: 2590612
Table of Contents
Front/Back Matter
Articles
- Joakim Arnlind and Sergei Silvestrov – Affine transformation crossed product type algebras and noncommutative surfaces [MR 2590613]
- Gilles G. de Castro – $C^*$-algebras associated with iterated function systems [MR 2590614]
- Kenneth R. Davidson and Elias G. Katsoulis – Nonself-adjoint operator algebras for dynamical systems [MR 2590615]
- Sjoerd Dirksen, Marcel de Jeu and Marten Wortel – Extending representations of normed algebras in Banach spaces [MR 2590616]
- Tsuyoshi Kajiwara – Countable bases for Hilbert $C^*$-modules and classification of KMS states [MR 2590617]
- Wolfgang Krieger and Kengo Matsumoto – Subshifts and $C^*$-algebras from one-counter codes [MR 2590618]
- Kengo Matsumoto – Orbit equivalence in $C^*$-algebras defined by actions of symbolic dynamical systems [MR 2590619]
- M. McGarvey and I. G. Todorov – Normalisers, nest algebras and tensor products [MR 2590620]
- Igor V. Nikolaev – Noncommutative geometry as a functor [MR 2590621]
- Johan Öinert – Simple group graded rings and maximal commutativity [MR 2590622]
- Hiroyuki Osaka, Kazunori Kodaka and Tamotsu Teruya – The Rohlin property for inclusions of $C^*$-algebras with a finite Watatani index [MR 2590623]
- Justin R. Peters – The $C^*$-envelope of a semicrossed product and nest representations [MR 2590624]
- N. Christopher Phillips – Freeness of actions of finite groups on $C^*$-algebras [MR 2590625]
- Jean Renault – Examples of masas in $C^*$-algebras [MR 2590626]
- Thomas Timmermann – A definition of compact $C^*$-quantum groupoids [MR 2590627]
- Yasuo Watatani – Complex dynamical systems and associated $C^*$-algebras [MR 2590628]
- J. D. Maitland Wright – On classifying monotone complete algebras of operators [MR 2590629]