Tomography and Inverse Transport Theory

International Workshop on Mathematical Methods in Emerging Modalities of Medical Imaging
October 25–30, 2009, Banff, Canada

International Workshop on Inverse Transport Theory and Tomography
May 16–21, 2010, Banff, Canada

Guillaume Bal
David Finch
Peter Kuchment
John Schotland
Plamen Stefanov
Gunther Uhlmann
Editors
Tomography and Inverse Transport Theory
Tomography and Inverse Transport Theory

International Workshop on Mathematical Methods in Emerging Modalities of Medical Imaging
October 25–30, 2009, Banff, Canada

International Workshop on Inverse Transport Theory and Tomography
May 16–21, 2010, Banff, Canada

Guillaume Bal
David Finch
Peter Kuchment
John Schotland
Plamen Stefanov
Gunther Uhlmann
Editors
Dedicated to the memory of Professor Leon Ehrenpreis
Contents

Preface ix
List of Workshop Participants xi

Multiple Illumination Quantitative Photoacoustic Tomography Using Transport and Diffusion Models

Ben Cox, Tanja Tarvainen, and Simon Arridge 1

Combined Source and Attenuation Reconstructions in SPECT

Guillaume Bal and Alexandre Jollivet 13

Non-uniqueness Result for a Hybrid Inverse Problem

Guillaume Bal and Kui Ren 29

Local Non-injectivity for Weighted Radon Transforms

Jan Boman 39

Inverse Gravimetry Approach to Attenuated Tomography

Alexander L. Bukhgeim 49

Transformation Optics and Approximate Cloaking

Hongyu Liu and Ting Zhou 65

Stability of the Gauge Equivalent Classes in Inverse Stationary Transport in Refractive Media

Stephen McDowall, Plamen Stefanov, and Alexandru Tamasan 85

Basic Theory for Generalized Linear Solid Viscoelastic Models

Joyce McLaughlin, Ashley Thomas, and Jeong-Rock Yoon 101

Current Density Impedance Imaging

Adrian Nachman, Alexandru Tamasan, and Alexander Timonov 135

Possibilities and Limitations of Time Domain Wave Equation Imaging

Frank Natterer 151

On Singularities and Instability of Reconstruction in Thermoacoustic Tomography

Linh V. Nguyen 163
Micro-tomography of Coherent X-ray Scatter Using an X-ray Collimator and Spectral Imaging Array

DIANE R. EAKER, STEVEN M. JORGENSEN, CONGWU CUI,
and ERIK L. RITMAN

171
Preface

The volume contains research and review articles written by participants of two related international workshops "Mathematical Methods in Emerging Modalities of Medical Imaging" (October 25–30, 2009, see http://www.birs.ca/events/2009/5-day-workshops/09w5017) and "Inverse Transport Theory and Tomography" (May 16–21, 2010, see http://www.birs.ca/events/2010/5-day-workshops/10w5063) that took place at the Banff International Research Station. These workshops brought together 64 mathematicians, physicists, engineers, and medical researchers from 10 countries working at the cutting edge of medical, geophysics, and industrial imaging research and addressed the demanding mathematical problems arising in this fast developing area. Among the participants there were many leading experts, as well as graduate students, postdocs, and other junior researchers.

The research and survey articles, written for the volume, address cutting edge issues of the newly developing imaging modalities (photoacoustics, current impedance imaging, hybrid imaging techniques, elasticity imaging), as well as the recent progress in resolving outstanding problems of more traditional modalities, such as SPECT, ultrasound imaging, and inverse transport theory. Related topics of invisibility cloaking are also considered.

The editors
July 15, 2011
List of Workshop Participants

- M. Allmaras (Texas A&M University)
- G. Ambartsoumian (Univ. of Texas Arlington)
- S. Arridge (University College London)
- G. Bal (Columbia University)
- W. Bangerth (Texas A&M University)
- J. Boman (Stockholm University, Sweden)
- A. Bukhgeim (Wichita State University)
- P. Burgholzer (Upper Austrian Research, Lintz, Austria)
- S. Carney (University of Illinois Urbana-Champaign)
- D. Choi (University of Washington)
- M. Courdurier (Columbia University)
- A. Davis (Jet Propulsion Laboratory)
- F. de Gournay (Universite de Versailles, France)
- D. Finch (Oregon State University)
- P. Gonzalez-Rodriguez (University of Carlos III de Madrid, Spain)
- A. Greenleaf (University of Rochester)
- A. Hielscher (Columbia University)
- N. Hoell (Columbia University)
- S. Holman (Purdue University)
- Y. Hristova (IMA, Minneapolis)
- M. Hubenthal (University of Washington)
- D. Isaacson (Rensselaer Polytechnic Institute)
- A. Jollivet (Columbia University)
- A. Katsevich (University of Central Florida)
- A. Kim (University of California Merced)
- P. Kuchment (Texas A&M University)
- L. Kunyansky (University of Arizona, Tucson)
- Y. Kurylev (University College London, UK)
- I. Langmore (Columbia University)
- M. Lassas (University of Helsinki, Finland)
- A. Lawrence (University of California, San Diego)
- M. Lewis (University of Texas Southwestern Medical Center at Dallas)
- C. Li (Washington University)
- H. Liu (University of Washington)
- M. Machida (University of Pennsylvania)
- A. Malcolm (Massachusetts Institute of Technology)
- A. Manduca (Mayo Clinic)
- V. Markel (University of Pennsylvania)
• J. McLaughlin (Rensselaer Polytechnic Institute)
• S. Moskow (Drexel University)
• F. Monard (Columbia University)
• A. Nachman (University of Toronto)
• G. Nakamura (Hokkaido University, Japan)
• F. Natterer (University of Münster, Germany)
• L. V. Nguyen (University of Idaho)
• V. Palamodov (Tel Aviv University, Israel)
• S. Patch (University of Wisconsin, Milwaukee)
• E. T. Quinto (Tufts University)
• K. Ren (University of Texas at Austin)
• E. Ritman (Mayo Clinic College of Medicine)
• W. Rundell (Texas A&M University)
• M. Salo (University of Helsinki, Finland)
• O. Scherzer (University of Vienna, Austria)
• J. Schotland (University of Pennsylvania)
• P. Stefanov (Purdue University)
• A. Tamasan (University of Central Florida)
• T. Tarvainen (University of Kuopio, Finland)
• G. Uhlmann (University of Washington)
• L. V. Wang (Washington University, St Louis)
• Y. Xu (Ryerson University, Toronto, Canada)
• R. Zemp (University of Alberta, Canada)
• H. Zhao (University of California, Irvine)
• T. Zhou (University of Washington)
• J.-R. Yoon (Clemson University)
This volume contains research and review articles written by participants of two related international workshops “Mathematical Methods in Emerging Modalities of Medical Imaging” (October 2009) and “Inverse Transport Theory and Tomography” (May 2010), which were held at the Banff International Research Station in Banff, Canada. These workshops brought together mathematicians, physicists, engineers, and medical researchers working at the cutting edge of medical imaging research and addressed the demanding mathematical problems arising in this area.

The articles, written by leading experts, address important analytic, numerical, and physical issues of the newly developing imaging modalities (e.g., photoacoustics, current impedance imaging, hybrid imaging techniques, elasticity imaging), as well as the recent progress in resolving outstanding problems of more traditional modalities, such as SPECT, ultrasound imaging, and inverse transport theory. Related topics of invisibility cloaking are also addressed.