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Preface

This collection is related to the Workshop of the 10th DIMACS Implementa-
tion Challenge, which took place in Atlanta, Georgia (USA) on February 13-14,
2012. The purpose of DIMACS Implementation Challenges1 is to assess the prac-
tical performance of algorithms in a respective problem domain. These challenges
are scientific competitions in areas of interest where worst case and probabilistic
analysis yield unrealistic results. Where analysis fails, experimentation can provide
insights into realistic algorithm performance and thereby help to bridge the gap be-
tween theory and practice. For this purpose common benchmark instances, mostly
from real applications, are established. By evaluating different implementations on
these instances, the challenges create a reproducible picture of the state of the art
in the area under consideration. This helps to foster an effective technology trans-
fer within the research areas of algorithms, data structures, and implementation
techniques as well as a transfer back to the original applications.

The topics of the previous nine challenges are as follows (in chronological or-
der): Network Flows and Matching (1990-91), Maximum Clique, Graph Coloring
and Satisfiability (1992-93), Parallel Algorithms for Combinatorial Problems (1993-
94), Fragment Assembly and Genome Rearrangements (1994-95), Priority Queues,
Dictionaries, and Multi-Dimensional Point Sets (1995-96), Near Neighbor Searches
(1998-99), Semidefinite and Related Optimization Problems (1999-2000), The Trav-
eling Salesman Problem (2000-01), and Shortest Path Problems (2005-06).

1. Introducing the 10th Challenge –
Graph Partitioning and Graph Clustering

The 10th challenge considered the two related problems of partitioning and
clustering graphs. Both are ubiquitous subtasks in many application areas. Gen-
erally speaking, techniques for graph partitioning and graph clustering aim at the
identification of vertex subsets with many internal and few external edges. To
name only a few, problems addressed by graph partitioning and graph clustering
algorithms are:

• What are the communities within an (online) social network?
• How do I speed up a numerical simulation by mapping it efficiently onto
a parallel computer?

• How must components be organized on a computer chip such that they
can communicate efficiently with each other?

• What are the segments of a digital image?
• Which functions are certain genes (most likely) responsible for?

1http://dimacs.rutgers.edu/Challenges/

vii
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For a more detailed treatment of applications and solution techniques, the
interested reader is referred to the surveys of Fortunato2, Schaeffer3, and Schloegel
et al.4 on the different topics.

Within the algorithms community, techniques for solving the problems above
have been developed at least since the early 1970s—while some of the applications
are newer. Improving known and developing new solution techniques are aspects
of ongoing research.

The primary goal of this challenge was to create a reproducible picture of the
state of the art in the area of graph partitioning and graph clustering algorithms. To
this end, a standard set of benchmark instances was identified. Then participants
were invited to submit solutions to different challenge problems. This way differ-
ent algorithms and implementations were tested against the benchmark instances.
Thereby future researchers are enabled to identify techniques that are most effec-
tive for a respective partitioning or clustering problem—by using our benchmark
set and by comparing their results to the challenge results.

2. Key Results

The main results of the 10th DIMACS Implementation Challenge include:

• Extension of a file format used by several graph partitioning and graph
clustering libraries for graphs, their geometry, and partitions. Formats
are described on the challenge website.5

• Collection and online archival5 of a common testbed of input instances
and generators (including their description) from different categories for
evaluating graph partitioning and graph clustering algorithms. For the
actual challenge, a core subset of the testbed was chosen.

• Definition of a new combination of measures to assess the quality of a
clustering.

• Definition of a measure to assess the work an implemention performs in a
parallel setting. This measure is used to normalize sequential and parallel
implementations to a common base line.

• Experimental evaluation of state-of-the-art implementations of graph par-
titioning and graph clustering codes on the core input families.

• A nondiscriminatory way to assign scores to solvers that takes both run-
ning time and solution quality into account.

• Discussion of directions for further research in the areas of graph parti-
tioning and graph clustering.

• The paper Benchmarks for Network Analysis, which was invited as a con-
tribution to the Encyclopedia of Social Network Analysis and Mining.

The primary location of information regarding the 10th DIMACS Implementation
Challenge is the website http://www.cc.gatech.edu/dimacs10/.

2Santo Fortunato, Community detection in graphs, Physics Reports 486 (2010), no. 3–5,
75–174.

3Satu E. Schaeffer, Graph clustering, Computer Science Review 1 (2007), no. 1, 27–64.
4K. Schloegel, G. Karypis, and V. Kumar, Graph partitioning for high-performance scientific

simulations, Sourcebook of parallel computing (Jack Dongarra, Ian Foster, Geoffrey Fox, William
Gropp, Ken Kennedy, Linda Torczon, and Andy White, eds.) Morgan Kaufmann Publishers,
2003, pp. 491–541.

5http://www.cc.gatech.edu/dimacs10/downloads.shtml

http://www.cc.gatech.edu/dimacs10/
http://www.cc.gatech.edu/dimacs10/downloads.shtml
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3. Challenge Description

3.1. Data Sets. The collection of benchmark inputs of the 10th DIMACS
Implementation Challenge includes both synthetic and real-world data. All graphs
are undirected. Formerly directed instances were symmetrized by making every
directed edge undirected. While this procedure necessarily loses information in a
number of real-world applications, it appeared to be necessary since most existing
software libraries can handle undirected graphs only. Directed graphs (or unsym-
metric matrices) are left for further work.

Synthetic graphs in the collection include random graphs (Erdős-Rényi, R-
MAT, random geometric graphs using the unit disk model), Delaunay triangula-
tions, and graphs that mimic meshes from dynamic numerical simulations. Real-
world inputs consist of co-author and citation networks, road networks, numerical
simulation meshes, web graphs, social networks, computational task graphs, and
graphs from adapting voting districts (redistricting).

For the actual challenge two subsets were chosen, one for graph partitioning
and one for graph clustering. The first one (for graph partitioning) contained 18
graphs, which had to be partitioned into 5 different numbers of parts each, yielding
90 problem instances. The second one (for graph clustering) contained 30 graphs.
Due to the choice of objective functions for graph clustering, no restriction on the
number of parts or their size was necessary in this category.

3.2. Categories. One of the main goals of the challenge was to compare dif-
ferent techniques and algorithmic approaches. Therefore participants were invited
to join different challenge competitions aimed at assessing the performance and
solution quality of different implementations. Let G = (V,E, ω) be an undirected
graph with edge weight function ω.

3.2.1. Graph Partitioning. Here the task was to compute a partition Π of the

vertex set V into k parts of size at most (1 + ε)� |V |
k �. The two objective functions

used to assess the partitioning quality were edge cut (EC, total number of edges
with endpoints in different parts) and maximum communication volume (CV). CV
sums for each part p and each vertex v therein the number of parts adjacent to v
but different from p. The final result is the maximum over each part.

For each instance result (EC and CV results were counted as one instance each),
the solvers with the first six ranks received a descending number of points (10, 6,
4, 3, 2, 1), a scoring system borrowed from former Formula 1 rules.

Three groups submitted solutions to the graph partitioning competition. Only
one of the submitted solvers is a graph partitioner by nature, the other two are
actually hypergraph partitioners. Both hypergraph partitioners use multilevel re-
cursive bisection. While their quality, in particular for the communication volume,
is generally not bad, the vast majority of best ranked solutions (139 out of 170) are
held by the graph partitioner KaPa.

3.2.2. Graph Clustering. The clustering challenge was divided into two separate
competitions with different optimization criteria. For the first competition the
objective modularity had to be optimized. Modularity has been a very popular
measure in the last years, in particular in the field of community detection. It
follows the intra-cluster-density vs. inter-cluster-sparsity paradigm. However, some
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criticism has emerged recently.6 Also, solvers performing implicit optimization
based on the intra-cluster-density vs. inter-cluster-sparsity paradigm were supposed
to have a fair chance, too. That is why we developed a second competition with
a mix of four other clustering objectives. The rationale was that the combination
of these measures would lead to meaningful clusters and avoid pathological cases
of single measures. The exact definition of the objective functions can be found at
the challenge website.7

The modularity competition saw the largest number of entries, with 15 solvers
from eight groups. Two solvers led the field, CGGCi RG and VNS. Of the two,
CGGCi RG scored the most points and obtained the highest number of best ranked
solutions. The four solvers entering the mix clustering competition were submitted
by two groups (two each). Three solvers headed the top of the ranking, with a
slight advantage for the two community-el implementations.

3.2.3. Pareto Challenges. For all quality competitions there was one corre-
sponding Pareto challenge. The rationale of the Pareto challenges was to take
the work into account an algorithm requires to compute a solution. Hence, the
two dimensions considered here were quality and work. Work was normalized with
respect to the machine performance, measured by a graph-based benchmark. To
this end, we used the shortest path benchmark produced for the 9th DIMACS Im-
plementation Challenge. Participants were asked to run this sequential benchmark
on their machine. Both the performance obtained in the shortest path benchmark
and the number of processing cores (raised to the power of 0.9) used for the 10th
DIMACS Implementation Challenge were taken into account for normalizing the
amount of work invested for obtaining the solution.

For each challenge instance result, each submitted solver received a Pareto
dominance count, which expresses by how many other algorithms it was Pareto-
dominated in terms of work and running time; then algorithms were ranked by
this number (lower count = better) and received points according to the Formula 1
scoring scheme described above.

Several groups submitted solutions from more than one solver to the respective
Pareto challenges, making use of the fact that here a lower solution quality might be
compensated by a better running time and vice versa. Still, the Pareto challenges
were won in all cases by the same groups that also won the respective quality
competitions. We attribute this double success (i) to the superior quality which
could not be dominated in many cases and (ii) to the Formula 1 scoring scheme,
which might have given an advantage to groups who submitted solutions from
several solvers. More information on the challenge results are available online.8

3.3. URL to Resources. The main website of the 10th DIMACS Implemen-
tation Challenge can be found at its permanent location http://www.cc.gatech.

edu/dimacs10/. The following subdirectories contain:

• archive/data/: Testbed instances archived for long-term access.
• talks/: Slides of the talks presented at the workshop.
• papers/: Papers on which the workshop talks are based.

6Andrea Lancichinetti and Santo Fortunato, Limits of modularity maximization in commu-
nity detection, Phys. Rev. E 84 (2011), 066122.

7http://www.cc.gatech.edu/dimacs10/data/dimacs10-rules.pdf
8http://www.cc.gatech.edu/dimacs10/talks/orga-talk-dimacs-results.pdf

http://www.cc.gatech.edu/dimacs10/
http://www.cc.gatech.edu/dimacs10/
http://www.cc.gatech.edu/dimacs10/ data/dimacs10-rules.pdf
http://www.cc.gatech.edu/dimacs10/talks/orga-talk-dimacs-results.pdf
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• results/: Partitions submitted as part of the challenge as well as code
for their evaluation and the resulting data

All respective files can be found and downloaded by following links from the home-
page. Researchers are particularly encouraged to download and use the graphs we
compiled and archived.

4. Contributions to this Collection

In this section we give a short overview of the papers that were selected for
this collection. All of them were presented at the Workshop of the 10th DIMACS
Implementation Challenge and contributed to the success of the event. Not all
solvers described in these papers actually entered the challenge. Also, not all solvers
that entered the challenge are part of this collection.

4.1. Graph Partitioning. The winner in terms of graph partitioning quality
was KaPa, by Sanders and Schulz, described in their paper High Quality Graph
Partitioning. KaPa combines the solutions of several related solvers developed by
the same authors. It is a set of algorithms which use a combination of strategies.
Among these strategies are network flows, evolutionary algorithms, edge ratings
for approximate maximum weighted matchings in the multilevel process, repeti-
tive improvement cycles, and problem-specific local search techniques based on the
Fiduccia-Mattheyses (FM) heuristic.

Abusing a Hypergraph Partitioner for Unweighted Graph Partitioning, by Fag-
ginger Auer and Bisseling, describes Mondriaan, a package for matrix and hyper-
graph partitioning, and its (ab)use for graph partitioning. While Mondriaan usually
computes worse edge cuts than state-of-the-art graph partitioners, the solutions are
generally acceptable.

In Parallel Partitioning with Zoltan: Is Hypergraph Partitioning Worth It?,
Rajamanickam and Boman describe a partitioner which is very powerful in that it
is designed for scalable parallelism on large asymmetric hypergraphs.

Çatalyürek, Deveci, Kaya, and Uçar present in UMPa: A Multi-objective,
multi-level partitioner a system doing recursive multi-objective hypergraph bipar-
titioning that takes the bottleneck communication volume as primary objective
function into account but also looks for solutions with small total communication.

The related task of repartitioning dynamic graphs is addressed by Meyerhenke
in Shape Optimizing Load Balancing for MPI-Parallel Adaptive Numerical Simula-
tions. Diffusive methods are employed to determine both how many elements have
to migrate between processors as well as which elements are chosen for migration.
The properties of the diffusive processes usually lead to nicely shaped partitions.

In Graph Partitioning for Scalable Distributed Graph Computations, by Bu-
luc and Madduri, the authors develop a method for partitioning large-scale sparse
graphs with skewed degree distribution. The approach aims to partition the graph
into balanced parts with low edge cuts, a challenge for these types of graphs, so that
they can be used on distributed-memory systems where communication is often a
major bottleneck in running time. The authors derive upper bounds on the com-
munication costs incurred for a two-dimensional partitioning during breadth-first
search. The performance results using the large-scale DIMACS challenge graphs
shows that reducing work and communication imbalance among partitions is more
important than minimizing the total edge cut.
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4.2. Graph Clustering. Using Graph Partitioning for Efficient Network
Modularity Optimization, by Djidjev and Onus, describes how to formulate modu-
larity maximization in graph clustering as a minimum cut problem in a complete
weighted graph. In general, the according graph contains also negative weights.
However, the resulting minimum cut problem can be attacked by applying modifi-
cations of existing powerful codes for graph partitioning.

The solver VNS, by Aloise, Caporossi, Hansen, Liberti, and Perron, performs
Modularity Maximization in Networks by Variable Neighborhood Search, a meta-
heuristic and variant of local search. A local search or improving heuristic consists
of defining a neighborhood of a solution, choosing an initial solution x, and then
moving to the best neighbor x′ of x if the objective function value is improved. If
no such neighbor exists, the heuristic stops, otherwise it is iterated. VNS improves
this simple technique to escape from local optima. To this end, it applies the idea
of neighborhood change. By increasing the neighborhood distance iteratively, even
”mountain tops” surrounding local optima can be escaped.

The algorithm family k-community, developed by Verma and Butenko in
Network Clustering via Clique Relaxations: A Community Based Approach, are
based on the relaxation concept of a generalized community. Instead of requiring
a community to be a perfect clique, a generalized k-community is defined as a
connected subgraph such that the incident vertices of every edge have at least k
common neighbors within the subgraph. The algorithm family computes clusters by
finding k-communities for large (variable) k and placing them in different clusters.

Identifying Base Clusters for Maximizing Modularity, by Srinivasan,
Chakraborty, and Bhowmick, introduces the concept of identifying base clusters
as a preprocessing step for agglomerative modularity maximization methods. Base
clusters are groups of vertices that are always assigned to the same community,
independent of the modularity maximization algorithm employed or the order in
which the vertices are processed. In a computational study on two agglomerative
modularity maximization methods, the CNM method introduced by Clauset et al.
and the Louvain method by Blondel et al., the effect of using base clusters as a
preprocessing is shown.

Complete Hierarchical Cut-Clustering: A Case Study on Expansion and Mod-
ularity, by Hamann, Hartmann, and Wagner, studies the behavior of the cut-
clustering algorithm of Flake et al., a clustering approach which is based on mini-
mum s-t-cuts. The algorithm uses a parameter that provides a quality guarantee on
the clusterings in terms of expansion. This is particularly interesting since expan-
sion is a measure which is already NP-hard to compute. While Flake et al. examine
their algorithm with respect to the semantic meaning of the clusters, Hamann et al.
systematically analyze the quality of the clusterings beyond the guaranteed bounds
with respect to the approved measures expansion and modularity.

In A Partitioning-based divisive clustering technique for maximizing the modu-
larity, by Çatalyürek, Kaya, Langguth and Uçar, the authors present a new, divisive
algorithm for computing high modularity clusterings. The approach is based upon
recursive bipartitions using graph partitioning subroutines, and steps for refining
the obtained clusters. The study includes an experimental evaluation. On a variety
of problem instances from the literature, this new method performs well, and in a
number of cases, finds the best known modularity scores on these test graphs.
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An Ensemble Learning Strategy for Graph Clustering, by Ovelgönne and Geyer-
Schulz, describes the heuristic CGGCi RG, whose main idea is to combine several
weak classifiers into a strong classifier. From the maximal overlap of clusterings
computed by weak classifiers, the algorithm searches for a solution with high quality.
This way difficult choices are deferred after easy decisions have been fixed, which
leads to a high quality due to a better control of the search space traversal. It turns
out that the quality of the initial clusterings is of minor importance for the quality
of the final result given enough iterations.

While graph partitioning is rooted in the parallel computing community, the
picture appears to be different for graph clustering as only two clustering papers
employ significant parallelism. The agglomerative algorithm in Parallel Community
Detection for Massive Graphs, by Riedy, Meyerhenke, Ediger, and Bader, starts
out with each vertex as its own cluster. In each following iteration, beneficial
cluster merges improving the objective function value are identified and performed
in parallel by means of weighted matchings. The implementation is capable of
clustering graphs with a few billion edges in less than 10 minutes on a standard
Intel-based server.

The second paper that uses considerable parallelism to accelerate the solution
process is Graph Coarsening and Clustering on the GPU, by Fagginger Auer and
Bisseling. This paper also uses an agglomerative approach with matchings. It
alleviates the problem of small matchings due to star subgraphs by merging siblings,
i. e., neighbors of neighbors that do not share an edge. High performance is achieved
by careful algorithm design, optimizing the interplay of the CPU and the employed
graphics hardware.

5. Directions for Further Research

In the field of graph partitioning, important directions for further research
mentioned at the workshop are the widespread handling of directed graphs (or un-
symmetric matrices in case of matrix partitioning) and an improved consideration of
the objective function maximum communication volume. One possible approach—
also presented at the workshop—is to use hypergraphs instead of graphs. But this
seems to come at the price of worse performance and/or worse edge cut quality. For
the related problem of repartitioning with migration minimization, highly scalable
tools with a good solution quality are sought.

An active graph clustering research area is the development of objective func-
tions whose optimization leads to realistic and meaningful clusterings. While mod-
ularity has been very popular over recent years, current studies show that its de-
ficiencies can be severe and hard to avoid. The analysis of massive graphs for
clustering purposes is still in its infancy. Only two submissions for the graph clus-
tering challenge made use of significant parallelism. And only one of them was able
to process the largest graph in the challenge core benchmark, a web graph with 3.3
billion edges. Considering the size of today’s online social networks and WWW (to
name a few), there is a need to scale the analysis algorithms to larger input sizes.
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realistic performance of algorithms where worst case analysis is overly pessimistic and
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situations where analysis fails.
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