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A limit problem for degenerate quasilinear variational
inequalities in cylinders

Dimitri Mugnai

A Patrizia, con affetto.

Abstract. We consider quasilinear degenerate variational inequalities with
pointwise constraint on the values of the solutions. The limit problem as the
domain becomes unbounded in some directions is exhibited.

1. Introduction and main results

We propose a contribution to the study of limit problems for variational in-
equalities set in cylinders becoming unbounded in some directions, as in [10] or [9],
which develop a research already considered in [2], [3], [4], [5], [6], [7], [8], [11],
[13]. However, in contrast to the previous papers, we consider quasilinear varia-
tional inequalities, also with nonlinear lower order terms, in the spirit of [12]. In
particular, the presence of the p–Laplace operator in place of the usual Laplacian
introduces several technicalities which don’t let us obtain precise estimates as in the
papers cited above. Nevertheless, a description of the limit problem is still possible.

Let us present the precise setting of the problem. Letm,n ∈ N and let ω1 ⊂ R
m

and ω2 ⊂ R
n be two bounded open subsets such that

(1.1) ω1 is convex and contains 0.

For any � > 0 we introduce the cylinder

Ω� = �ω1 × ω2 ⊂ R
m × R

n,

whose points will be denoted by (x, y), so that x will denote a generic point in �ω1,
while y ∈ ω2.

A general constrained problem can be the following: for any y ∈ ω2, let K(y)

be a convex subset of R × R
m+n. Finally, fixed p ∈ (1,∞) and g ∈ W 1,p

0 (ω2), we
introduce the constrain set

K� :=
{
v ∈ W 1,p(Ω�) : v = g on ∂Ω�, (v,Dv)(x, y) ∈ K(y) a.e. in Ω�

}
,
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282 D. MUGNAI

which is a closed and convex subset of W 1,p(Ω�). Once fixed f ∈ Lp′
(ω2), we finally

consider the nonlinear variational inequality

(P�)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u� ∈ K�∫
Ω�

[
|Du�|p−2Du� ·D(v − u�) + h(y, u�)(v − u�)

]
dxdy

≥
∫
Ω�

f(y)(v − u�) dxdy ∀ v ∈ K�.

Remark 1.1. We can replace f ∈ Lp′
(ω2) with the less restrictive condition

f ∈ Lq(ω2), where q = pn/(pn− n+ p) when p < n, but for the sake of simplicity

we present all the results for f ∈ Lp′
(ω2).

Associated to (P�) there is a natural expected limit problem

(P∞)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u∞ ∈ K∞∫
ω2

[
|Du∞|p−2Du∞ ·D(v − u∞) + h(y, u∞)(v − u∞)

]
dy

≥
∫
ω2

f(y)(v − u∞) dy ∀ v ∈ K∞,

where

K∞ :=
{
u ∈ W 1,p(ω2) : (u, 0, Dyu)(y) ∈ K(y) for a.e. y ∈ ω2

}
and Dyu = (∂y1

u, . . . , ∂ynu) is the gradient of u with respect to the y–variables.
In view of the asymptotic estimate found in [10], we concentrate on the case

in which

g = 0 and K(y) is a closed interval of R containing 0.

It is not clear whether (P�) and (P∞) admit solutions, since the nonlinear term
h may cause problems. For this we assume:
(h)(i) h : ω2×R → R is a Carathéodory function and there exist a ∈ Lp′

(ω2), b > 0
and q ≥ 1 such that

(1.2) |h(y, s)| ≤ a(y) + b|s|q−1 for a.e. y ∈ ω2 and all s ∈ R.

Here q ∈ [1, p∗), where p∗ = ∞ if p ≥ n and p∗ = pn/(n − p) if p < n. Moreover,
we assume one of the following conditions:
(ii) h is non decreasing in the second variable, h(y, 0) = 0 for a.e. y ∈ ω2 and in
(1.2) q is allowed to vary in [1, p∗] if p < n; or
(iii) there exists L ∈ [0, μ1) such that

|h(y, s1)− h(y, s2)| ≤ L|s1 − s2|p−1 for all s1, s2 ∈ R and for a.e. y ∈ ω2,

and in addition

lim inf
|s|→∞

h(y, s)

|s|p−2s
:= α(y) > −min{λ1,p, μ1}.

Here μ1 is the best constant in the Poincaré inequality in ω2:

(1.3) μ1

∫
ω2

|u|pdy ≤
∫
ω2

|Dyu|pdx for all u ∈ W 1,p
0 (ω2).
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Moreover, λ1,p denotes the first eigenvalue of −Δp in W 1,p
0 (Rm × ω2), i.e.

λ1,p = inf
u∈W

1,p
0 (Rm×ω2)

u �=0

∫
Rm×ω2

|Du|pdxdy∫
Rm×ω2

|u|pdxdy
,

which is a strictly positive number, see [1, Remark 9.21], and which guarantees the
following Poincaré inequality:

(1.4) λ1,p

∫
Rm×ω2

|u|pdxdy ≤
∫
Rm×ω2

|Du|pdxdy for all u ∈ W 1,p
0 (Rm × ω2).

Let us also remark that by an easy null extension argument, we find that for every
� > 0

(1.5) λ1,p ≤ λ1,p,� := inf
u∈W

1,p
0 (Ω�)

u �=0

∫
Ω�

|Du|pdxdy∫
Ω�

|u|pdxdy
,

for which there holds

(1.6) λ1,p,�

∫
Ω�

|u|pdxdy ≤
∫
Ω�

|Du|pdxdy for all u ∈ W 1,p
0 (Ω�).

Simple arguments also show that μ1 ≤ λ1,p,� for every � > 0.

Lemma 1.1. If f ∈ Lp′
(ω2) and h satisfies (h)(i),(ii) or (h)(i),(iii), then prob-

lem (P�) has a solution for every � > 0, and problem (P∞) has a solution, as well.

Remark 1.2. The condition that h is Lipschitz continuous in the second vari-
able uniformly in the first one, without any additional condition on the size of the
Lipschitz constant is sufficient for the existence of a solution. However, in (h)(iii) we
need the condition L < μ1 when dealing with the limit behaviour of the solutions.

With additional assumptions, also uniqueness is granted. In particular, the
solution u� of (P�) is unique if p ≥ 2 and an additional assumption on h is verified.
Indeed, if p ≥ 2, the operator −Δp is strongly monotone, which is a straightforward
consequence of the following fact: if p ≥ 2, there exist Cp ≥ cp > 0 such that

(1.7) cp|ξ − ζ|p ≤
(
|ξ|p−2ξ − |ζ|p−2ζ

)
·
(
ξ − ζ

)
and

(1.8)
∣∣∣|ξ|p−2ξ − |ζ|p−2ζ

∣∣∣ ≤ Cp(|ξ|p−2 + |ζ|p−2)|ξ − ζ|

for every ξ, ζ ∈ R
k, k ∈ N.

Lemma 1.2. If, in addition to the assumptions of Lemma 1.1, there exists a
measurable function β : ω2 −→ R such that

h(y, s1)− h(y, s2)

|s1 − s2|p−2(s1 − s2)
≥ β(y) > −cp min{λ1,p, μ1} ∀ s2 	= s1 and for a.e.x ∈ ω2,

then the solution of problem (P�) is unique if p ≥ 2 for every � > 0, and the solution
of (P∞) is unique, as well.

If h is strictly increasing in the second variable, the solution is unique for every
p > 1.
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The main result of this paper is that, as expected, u� converges to u∞, in the
following sense:

Theorem 1.1. Let p ≥ 2 be such that m(p− 2) < 1. Then, under the assump-
tions of Lemmas 1.1 and 1.2,

inf
�,τ

∫
Ωτ

|D(u� − u∞)|pdxdy = 0.

More precisely, if

(1.9) inf
�

∫
Ω�

|D(u� − u∞)|pdxdy > 0,

then there exist constants A, B > 0, η ∈ (0, 1) such that

(1.10)

∫
Ω �

2

|D(u� − u∞)|pdxdy ≤ Ae−B�η .

In [10] the authors prove that, for p = 2 and h = 0 the following estimate
holds:

(1.11)

∫
Ω �

2

|D(u� − u∞)|pdy ≤ ce−α�‖f‖Lp′ (ω2)
,

where C,α > 0 are independent of �. In our case we are not able to prove such an
estimate, due to the presence of a remainder term which disappears only if p = 2,
and which we can control only under the additional condition m(p− 2) < 1.

2. Proofs of the Lemmas

Proof of Lemma 1.1. We concentrate on (P�), the proof for (P∞) being the
same. Consider the functional I : W 1,p(Ω�) → (−∞,∞] defined as

I(u) =

⎧⎨
⎩

1

p

∫
Ω�

|Du|pdxdy +

∫
Ω�

H(y, u) dxdy −
∫
Ω�

f(y)u dxdy if u ∈ K�,

+∞ elsewhere,

where H(y, u) =
∫ u

0
h(y, s)ds. Note that by the general assumption on h, I needs

not be convex. However, we will show that I has a minimum.
First, let us assume that (h)(ii) holds, and let (un)n ⊂ K� be a minimizing

sequence. Since h is non decreasing, then H is nonnegative, so that it is readily
seen that (un)n is bounded. Thus, we can assume that un ⇀ u in W 1,p

0 (Ω�) and

a.e. in Ω�. Of course, u ∈ K�. By the semicontinuity of the W 1,p and Lp∗
–norms

(or the continuity of the Lq–norm), we find that I has a minimum point in K�, and
so a solution of (P�) is given.

If (h)(iii) holds, we proceed as follows. Fixed ε > 0, there exists M > 0 such
that

h(y, s)

|s|p−2s
− α(y) > −ε ∀ |s| > M and a.e. y ∈ ω2.

Integrating we get

(2.12) H(y, s)−H(y,M) >
α(y)− ε

p
(|s|p −Mp) ∀ |s| > M and a.e. y ∈ ω2,
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while (1.2) implies

(2.13) |H(y, s)| ≤
(
a(y) +

b

p
Mq−1

)
M ∀ |s| ≤ M and a.e. y ∈ ω2.

Then, by (2.12) and (2.13) there exists CM > 0 such that

H(y, s)

|s|p =

∫ M

0

h(y, σ) dσ +

∫ s

M

h(y, σ) dσ

|s|p >

CM +
α(y)− ε

p
(|s|p −Mp)

|s|p ,

so that

lim inf
|s|→∞

H(y, s)

|s|p ≥ α(y)− ε

p

for every ε > 0, i.e.

(2.14) lim inf
|s|→∞

H(y, s)

|s|p ≥ α(y)

p
.

Now let us show

(2.15) lim inf
‖u‖→∞
u∈K�

I(u)

‖u‖p > 0.

Take (un)n in K� such that ‖un‖ → ∞. Up to a subsequence we can assume that

vn := un

‖un‖ converges to a function u ∈ K� weakly in W 1,p
0 (Ω�), strongly in Lp(Ω�)

and a.e. in Ω�. Moreover ‖u‖ ≤ 1 and

(2.16)
|H(y, un)|
‖un‖p

≤ a(y)|un|+ b|un|p/p
‖un‖p

−→ b

p
|u|p in L1(Ω�).

We recall the following generalized Fatou’s Lemma: if (φn)n and (ψn)n are two
sequences of measurable functions on a measurable space (X,μ) such that

φn ≥ ψn μ–a.e. in X,

ψn → ψ μ–a.e. in X

and

lim
n→∞

∫
X

ψndμ =

∫
X

lim
n→∞

ψndμ ∈ R,

then ∫
X

lim inf
n→∞

φn dμ ≤ lim inf
n→∞

∫
X

φn dμ.

The proof of the statement is obtained by applying the Fatou Lemma to the func-
tions θn = φn − ψn.

Hence, by (2.16) we immediately find

(2.17) lim inf
n→∞

∫
Ω�

H(y, un)

‖un‖p
dxdy ≥

∫
Ω�

lim inf
n→∞

H(y, un)

‖un‖p
dxdy.

But

Ω� =
{
z ∈ Ω� : un(z) is bounded

}
∪
{
z ∈ Ω� : |un(z)| is unbounded

}
,

and H(y,un)
‖un‖p → 0 in the set {z ∈ Ω� : un(z) is bounded}, while in the set {z ∈ Ω� :

|un(z)| is unbounded} we have

lim inf
n→∞

H(y, un)

‖un‖p
= lim inf

n→∞

H(y, un)

|un|p
|un|p
‖un‖p

≥ α(y)

p
|u(y)|p
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by (2.14). Therefore (2.17) gives

lim inf
n→∞

∫
Ω�

H(y, un)

‖un‖p
≥

∫
Ω�

α(y)

p
|u|p

⎧⎨
⎩> −λ1,p

p

∫
Ω�

|u|p dxdy if u 	= 0,

= 0 if u = 0,

so that

lim inf
n→∞

I(un)

‖un‖p
>

⎧⎪⎨
⎪⎩

1

p
− λ1,p

p

∫
Ω�

|u|p dxdy if u 	= 0,

1

p
if u = 0.

By the fact that ‖u‖ ≤ 1, (1.5) and the Poincaré inequality (1.6), we get

lim inf
n→∞

I(un)

‖un‖p
>

⎧⎪⎨
⎪⎩

1

p
− 1

p

∫
Ω�

|Du|p dx ≥ 0 if u 	= 0,

1

p
if u = 0,

and (2.15) follows.
As a consequence, I is coercive and obviously sequentially weakly lower semi–

continuous in K�. Hence, by the Weierstrass Theorem, there exists a minimum of
I on K�, which is a solution of problem (P�). �

Proof of Lemma 1.2. As before, we prove the uniqueness result only for (P�).
Assume u1, u2 are two solutions of problem (P�); then, choosing u2 as test func-
tion in (P�) when u1 is considered as solution and u1 as test function when u2 is
considered as solution, and summing up, we immediately find

(2.18)

∫
Ω�

(
|Du1|p−2Du1 − |Du2|p−2Du2

)
·
(
Du2 −Du1

)
dxdy

+

∫
Ω�

[
h(x, u1)− h(x, u2)

]
(u2 − u1)dxdy ≥ 0.

Then, from (1.7) and the additional hypothesis on h, we find

0 ≤ −cp‖u1 − u2‖p −
∫
Ω�

β|u1 − u2|pdxdy,

and, if u1 	= u2, by (1.6), we would find

0 < −cpλ1,p,�

∫
Ω�

|u1 − u2|pdxdy + cpλ1,p

∫
Ω�

|u1 − u2|pdxdy

≤ −cpλ1,p,�

∫
Ω�

|u1 − u2|pdxdy + cpλ1,p,�

∫
Ω�

|u1 − u2|pdxdy = 0.

If h is strictly increasing in the second variable, from (2.18) we obtain, −Δp

being monotone for every p > 1,

0 =

∫
Ω�

[
h(x, u1)− h(x, u2)

]
(u2 − u1)dxdy,

from which u1 = u2 by the strict monotonicity. �
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3. Proof of the Theorem

We start as in [10]. Take 0 < �1 < �− 1 and a function φ ∈ C∞
C (Rm) such that

0 ≤ φ ≤ 1, φ = 1 on �1ω1, φ = 0 on R
m \ (�1 + 1)ω1, |Dφ| ≤ c

for some constant c independent of �1 and �. Then u� − (u∞ − u�)φ ∈ K�, so that
from (P�) we get

(3.19)

−
∫
Ω�

|Du�|p−2Du� ·D((u� − u∞)φ)dxdy

−
∫
Ω�

h(y, u�)(u� − u∞)φ dxdy ≥ −
∫
Ω�

f(y)(u� − u∞)φ dxdy.

In an analogous way, since u∞ + (u�(x, ·)− u∞)φ ∈ K∞ for a.e. x ∈ �ω1, from
(P∞) we find that for a.e. x ∈ �ω1

∫
ω2

|Dyu∞|p−2Dyu∞ ·Dy((u�(x, y)− u∞)φ)dy

+

∫
ω2

h(y, u∞)(u�(x, y)− u∞)φ dy ≥
∫
ω2

f(y)(u�(x, y)− u∞)φ dy.

Integrating the previous inequality in x, u∞ and φ being independent of x, we find

(3.20)

∫
Ω�

|Du∞|p−2Du∞ ·D((u� − u∞)φ)dxdy

+

∫
Ω�

h(y, u∞)(u� − u∞)φ dxdy ≥
∫
Ω�

f(y)(u� − u∞)φ dxdy.

Summing up both sides of (3.19) and (3.20), we get

(3.21)

∫
Ω�

(|Du�|p−2Du� − |Du∞|p−2Du∞) ·D((u� − u∞)φ)dxdy

≤
∫
Ω�

[h(y, u∞)− h(y, u�)](u� − u∞))φ dxdy.

Now, if h is non decreasing in the second variable, the right hand side of (3.21) is
non positive. Otherwise, if (h)(iii) holds, we can estimate (3.21) with

(3.22) L

∫
Ω�

φ|u� − u∞|pdxdy ≤ L

∫
Ω�1+1

|u� − u∞|pdxdy.
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Hence, recalling that Dφ = 0 in the complementary set of Ω�1+1 \ Ω�1 , (3.21)
and (1.8) imply∫

Ω�

(|Du�|p−2Du� − |Du∞|p−2Du∞) ·D(u� − u∞)φdxdy

≤ c

∫
Ω�1+1\Ω�1

|u� − u∞|
∣∣∣|Du�|p−2Du� − |Du∞|p−2Du∞

∣∣∣ dxdy
+ L

∫
Ω�1+1

|u� − u∞|pdxdy

≤ cCp

∫
Ω�1+1\Ω�1

|u� − u∞|(|Du�|p−2 + |Du∞|p−2)|D(u� − u∞)| dxdy

+ L

∫
Ω�1+1

|u� − u∞|pdxdy,

where we allow the value L = 0 if h is non decreasing.
On the other hand, again by (1.7), we deduce

(3.23)

cp

∫
Ω�1

|D(u� − u∞)|pdxdy ≤ cp

∫
Ω�

φ|D(u� − u∞)|pdxdy

≤ cCp

∫
Ω�1+1\Ω�1

|u� − u∞|(|Du�|p−2 + |Du∞|p−2)|D(u� − u∞)| dxdy

+ L

∫
Ω�1+1

|u� − u∞|pdxdy.

By Young’s and Hölder’s inequalities, for every ε > 0 we have
(3.24)

≤εcCp

∫
Ω�1+1\Ω�1

|u� − u∞|pdxdy

+
cCp

ε
1

p−1

[∫
Ω�1+1\Ω�1

(|Du�|p−2 + |Du∞|p−2)p/(p−1)|D(u� − u∞)|p/(p−1)dxdy

]

+
L

ε
1

p−1

∫
Ω�1+1

|u� − u∞|pdxdy

≤εcCp

∫
Ω�1+1\Ω�1

|u� − u∞|pdxdy

+
cCp

ε
1

p−1

[∫
Ω�1+1\Ω�1

(|Du�|p−2 + |Du∞|p−2)p/(p−2)dxdy

] p−2
p−1

·
[∫

Ω�1+1\Ω�1

|D(u� − u∞)|pdxdy
] 1

p−1

+
L

ε
1

p−1

∫
Ω�1+1

|u� − u∞|pdxdy.

Now, by the Poincaré inequality (1.3), we have that for a.e. x ∈ ω1∫
ω2

|u� − u∞|pdy ≤ 1

μ1

∫
ω2

|Dy(u� − u∞)|pdy.
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Integrating over (�1 + 1)ω1 \ �1ω1, we immediately find

(3.25)

∫
Ω�1+1\Ω�1

|u� − u∞|pdxdy ≤ 1

μ1

∫
Ω�1+1\Ω�1

|D(u� − u∞)|pdxdy,

while integrating over (�1 + 1)ω1 gives

(3.26)

∫
Ω�1+1

|u� − u∞|pdxdy ≤ 1

μ1

∫
Ω�1+1

|D(u� − u∞)|pdxdy.

Hence, by (3.23) and (3.24), using (3.25) and (3.26), we easily obtain
(3.27)∫

Ω�1

|D(u� − u∞)|pdxdy ≤ εcCp + Lε−1/(p−1)

μ1cp + εcCp

∫
Ω�1+1

|D(u� − u∞)|pdxdy

+
cCpμ1ε

−1/(p−1)

μ1cp + εcCp

·
[∫

Ω�1+1\Ω�1

(|Du�|p−2 + |Du∞|p−2)p/(p−2)dxdy

] p−2
p−1

·
[∫

Ω�1+1\Ω�1

|D(u� − u∞)|pdxdy
] 1

p−1

.

Lemma 3.1. There exists M > 0 such that∫
Ω�1+1\Ω�1

(|Du�|p−2 + |Du∞|p−2)p/(p−2)dxdy ≤ M�m1

and ∫
Ω�1

(|Du�|p + |Du∞|p)dxdy ≤ M�m1

for every �1 ≥ 1.

Proof. Let us start from u∞. Taking v = 0 in (P∞), we find∫
ω2

|Du∞|pdy +

∫
ω2

h(y, u∞)u∞dy ≤
∫
ω2

f(y)u∞dy ≤ ‖f‖Lp′ (ω2)
‖u∞‖Lp(ω2).

If (h)(ii) holds, by (1.3) we obtain

(3.28)

∫
ω2

|Du∞|pdy ≤ ‖f‖Lp′ (ω2)
‖u∞‖Lp(ω2) ≤

‖f‖Lp′ (ω2)

μ
1/p
1

(∫
ω2

|Du∞|pdy
)1/p

,

while, if (h)(iii) is in force, we get

(3.29)

∫
ω2

|Du∞|pdy ≤ ‖f‖Lp′ (ω2)
‖u∞‖Lp(ω2) + L

∫
ω2

|u∞|pdy.

From (3.28), integrating over (�1 + 1)ω1 \ �1ω1, we find

(3.30)

∫
Ω�1+1\Ω�1

|Du∞|pdxdy ≤ A�m−1
1

for some constant A > 0. On the other hand, starting from (3.29), by (1.3), using
the fact that L < μ1, we obtain

(3.31)

∫
ω2

|Du∞|pdy ≤ B
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for some positive constant B. Integrating (3.31), we find∫
Ω�1+1\Ω�1

|Du∞|pdxdy ≤ B�m−1
1

Concerning u�, choosing v = 0 in (P�), in an analogous way, we find

‖u�‖p−1

W 1,p
0 (Ω�1

)
≤

|ω1|‖f‖Lp′ (ω2)

μp
1

�
m/p′

1 ≤
|ω1|‖f‖Lp′ (ω2)

μp
1

�m1

if (h)(ii) holds (recall that p′ > 1), while, under assumption (h)(iii), we find

‖u�‖pW 1,p
0 (Ω�1

)
≤ C�m1

for some constant C > 0.
Proceeding as above and integrating over �1ω1, the conclusions easily follow. �

Starting from (3.27), using Lemma 3.1, we find∫
Ω�1

|D(u� − u∞)|pdxdy ≤ εcCp + Lε
− 1

p−1

μ1cp + εcCp

∫
Ω�1+1

|D(u� − u∞)|pdxdy

+
cCpμ1ε

−1/(p−1)

μ1cp + εcCp
[M�m]

p−2
p−1

[∫
Ω�1+1\Ω�1

|D(u� − u∞)|pdxdy
] 1

p−1

.

We need the following inequality, whose proof is very easy: if a ≥ b ≥ 0 and
α ∈ [0, 1], then

(a− b)α ≤ 21−αaα − bα.

As a consequence, we get∫
Ω�1

|D(u� − u∞)|pdxdy ≤ εcCp + Lε
− 1

p−1

μ1cp + εcCp

∫
Ω�1+1

|D(u� − u∞)|pdxdy

+
cCpμ1ε

−1/(p−1)

μ1cp + εcCp
[M�m]

p−2
p−1 2

p−2
p−1

[∫
Ω�1+1

|D(u� − u∞)|pdxdy
] 1

p−1

− cCpμ1ε
−1/(p−1)

μ1cp + εcCp
[M�m]

p−2
p−1

[∫
Ω�1

|D(u� − u∞)|pdxdy
] 1

p−1

.

Setting

f(�, τ ) =

∫
Ωτ

|D(u� − u∞)|pdxdy

and

(3.32) k =
εcCp + Lε−

1
p−1

μ1cp + εcCp
and A =

cCpμ1ε
−1/(p−1)

μ1cp + εcCp
[M�m]

p−2
p−1 ,

this means that

(3.33) f(�, �1) +Af(�, �1)
1

p−1 ≤ kf(�, �1 + 1) + 2
p−2
p−1Af(�, �1 + 1)

1
p−1 .

First, assume by contradiction that

inf f = β > 0.

Then we claim that there exists λ ∈ (k, 1) such that

(3.34) f(�, �1) +Af(�, �1)
1

p−1 ≤ λ
(
f(�, �1 + 1) + Af(�, �1 + 1)

1
p−1

)
.
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Indeed, we prove that

kf(�, �1 + 1) + 2
p−2
p−1Af(�, �1 + 1)

1
p−1 ≤ λ

(
f(�, �1 + 1) +Af(�, �1 + 1)

1
p−1

)
,

or, equivalently,

(3.35) λ− k ≥ (2
p−2
p−1 − λ)Af(�, �1 + 1)−

p
p−1 .

Condition (3.35) is guaranteed, for example, if

λ− k ≥ (2
p−2
p−1 − λ)Aβ− p

p−1 ,

that is

(3.36) λ ≥ k + 2
p−2
p−1Aβ− p

p−1

1 +Aβ− p
p−1

.

We now choose ε = �γ with γ > (m − 1)(p − 2)/(p − 1), so that, recalling (3.32),
(3.36) reads

λ ≥ cCp�
γ + L�−

γ
p−1 + 2

p−2
p−1 cCpβ

− p
p−1μ1M

p−2
p−1 �

m(p−2)−γ
p−1

μ1cp + cCp�γ + cCpβ
− p

p−1μ1M
p−2
p−1 �

m(p−2)−γ
p−1

:= λ0.

Note that λ0 < 1 if and only if we choose γ > m(p− 2) and � large. In this case

lim
�→∞

λ0 = 1−.

Thus, we can take λ = λ0 < 1, and starting from (3.34), once set g = f+Af
1

p−1 ,
we find

(3.37) g(�, �1) ≤ λ0g(�, �1 + 1).

Choosing �1 = �/2 and iterating, we easily get

g

(
�,

�

2

)
≤ λ

[ �2 ]
0 g

(
�,

�

2
+

[
�

2

])
.

Recalling that �
2 − 1 ≤

[
�
2

]
≤ �

2 , we finally obtain

(3.38) g

(
�,

�

2

)
≤ e(

�
2−1) lnλ0g(�, �) =

1

λ0
e

�
2 lnλ0g(�, �).

Since λ0 → 1− as � → ∞, we take the first order expansion of the right hand side
of (3.38), so that by Lemma 3.1, we find

exp

(
− μ1cp
2cCp

�1−γ

)
D�m

for some constant D > 0. Taking γ also such that γ < 1 (which is possible, since
m(p− 2) < 1), we can find A, B > 0 and η ∈ (0, 1) such that

g

(
�,

�

2

)
≤ Ae−B�η → 0 as � → ∞,

against the assumption that inf f > 0, which implies inf g > 0.
Hence inf g = inf f = 0. Now, if inf� g(�, �) = β > 0, we can proceed as we did

to obtain (3.37) from (3.36), starting with �1 = �− 1 and finding

g(�, �− 1) ≤ λ0g(�, �),
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which implies

g

(
�−

[
�

2

]
, �−

[
�

2

]
− 1

)
≤ λ

[ �2 ]+1

0 g(�, �),

and, as before, we can find A, B > 0 and η ∈ (0, 1) such that

g

(
�

2
−
[
�

2

]
,
�

2
− 1

)
≤ Ae−B�η → 0 as � → ∞.

Setting κ = �
2 −

[
�
2

]
, we have �

2 ≤ κ ≤ �
2 + 1 and thus

g(κ, κ− 2) ≤ g

(
k,

κ

2
+

1

2

[
�

2

]
− 1

)
≤ Ae−Bκη

and the theorem is completely proved.

Remark 3.1. In contrast to [10], we are not able to prove an estimate of the
form (1.11). However, we believe that it is coherent with (3.33) when p 	= 2. Indeed,
for instance, the function �−1 satisfies (3.33), but, obviously, has no exponential
decay.
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[Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2002. MR1999898
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