# Geometric Analysis and Integral Geometry

### About this Title

**Eric Todd Quinto**, *Tufts University, Medford, MA*, **Fulton Gonzalez**, *Tufts University, Medford, MA* and **Jens Gerlach Christensen**, *Tufts University, Medford, MA*, Editors

Publication: Contemporary Mathematics

Publication Year
2013: Volume 598

ISBNs: 978-0-8218-8738-7 (print); 978-1-4704-1026-1 (online)

DOI: http://dx.doi.org/10.1090/conm/598

### Table of Contents

**Front/Back Matter**

- Sigurdur Helgason – Some personal remarks on the Radon transform
- G. Ólafsson and R. J. Stanton – On the Life and Work of S. Helgason

** Rsearch and expository articles **

- G. Ambartsoumian, J. Boman, V. P. Krishnan and E. T. Quinto – Microlocal analysis of an ultrasound transform with circular source and receiver trajectories
- Nils Byrial Andersen and Mogens Flensted–Jensen – Cuspidal discrete series for projective hyperbolic spaces
- Swanhild Bernstein and Isaac Z. Pesenson – The Radon transform on $SO(3)$: motivations, generalizations, discretization
- Jens Gerlach Christensen – Atomic decompositions of Besov spaces related to symmetric cones
- Michael Eastwood – A double fibration transform for complex projective space
- Tomoyuki Kakehi – Magnetic Schrödinger equation on compact symmetric spaces and the geodesic Radon transform of one forms
- Toshiyuki Kobayashi – $F$-method for constructing equivariant differential operators
- Hongyu Liu – Schiffer’s conjecture, interior transmission eigenvalues and invisibility cloaking: Singular problem vs. nonsingular problem
- W. R. Madych – Approximate Reconstruction from Circular and Spherical Mean Radon Transform Data
- G. Ólafsson, A. Pasquale and B. Rubin – Analytic and group-theoretic aspects of the Cosine transform
- Hiroshi Oda and Toshio Oshima – Quantization of linear algebra and its application to integral geometry
- François Rouvière – Mean value theorems on symmetric spaces
- B. Rubin – Semyanistyi fractional integrals and Radon transforms
- Hideko Sekiguchi – Radon–Penrose transform between symmetric spaces
- Joseph A. Wolf – Principal series representations of infinite dimensional Lie groups, II: Construction of induced representations