# Foundations of Mathematics

### About this Title

**Andrés Eduardo Caicedo**, *Mathematical Reviews, Ann Arbor, MI*, **James Cummings**, *Carnegie Mellon University, Pittsburgh, PA*, **Peter Koellner**, *Harvard University, Cambridge, MA* and **Paul B. Larson**, *Miami University, Oxford, OH*, Editors

Publication: Contemporary Mathematics

Publication Year:
2017; Volume 690

ISBNs: 978-1-4704-2256-1 (print); 978-1-4704-4079-4 (online)

DOI: https://doi.org/10.1090/conm/690

### Table of Contents

**Front/Back Matter**

**Articles**

- H. G. Dales – Norming infinitesimals of large fields
- Theodore A. Slaman and Mariya I. Soskova – The enumeration degrees: Local and global structural interactions
- A. S. Kechris, M. Sokić and S. Todorcevic – Ramsey properties of finite measure algebras and topological dynamics of the group of measure preserving automorphisms: Some results and an open problem
- Andrés Eduardo Caicedo and Jacob Hilton – Topological Ramsey numbers and countable ordinals
- Victoria Gitman and Joel David Hamkins – Open determinacy for class games
- M. Malliaris and S. Shelah – Open problems on ultrafilters and some connections to the continuum
- P. D. Welch – Obtaining Woodin’s cardinals
- Ralf Schindler – Woodin’s axiom $(*)$, or Martin’s Maximum, or both?
- Grigor Sargsyan – Translation procedures in descriptive inner model theory
- Scott Cramer – Implications of very large cardinals
- Justin Tatch Moore – What makes the continuum $\aleph _2$
- Penelope Maddy – Set-theoretic foundations