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On implementation of GHS attack against elliptic curve
cryptosystems over cubic extension fields of odd

characteristic
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Abstract. In this paper, we present algorithms implementing the GHS attack
against Elliptic curve cryptosystems (ECC). In particular, we consider two
large classes of elliptic curves over cubic extension fields of odd characteristic
which have weak covering curves against GHS attack, whose existence have

been shown recently [17], [18], [19], [20]. We give algorithms to compute
the defining equation of the covering curve and to transfer the DLP from the
elliptic curve to the Jacobian of the covering curve. An algorithm to test if
the covering curve is hyperelliptic is also given in the appendix.

1. Introduction

Elliptic curve cryptography is known as a rich source of secure and efficient
cryptosystems. In particular, it can provide the same level of security as RSA
and ElGamal cryptosystems while using much shorter key length. This property is
also desirable in implementation of compact and low cost cryptosystems. Against
cryptosystems based on low genus algebraic curves, the fastest known attacks (in
general) are “square-root” attacks such as the baby-step giant-step attack, Pollard’s
rho and lambda algorithms. Recently, index calculus attacks have been proposed by
Gaudry, Nagao, Gaudry-Thériault-Thomé-Diem [1], [2], [3] for hyperelliptic curves
of genera larger than 3 and by Diem [4] for non-hyperelliptic curves of genera larger
than or equal to 3.

A relatively new attack called GHS attack, which is based on the idea of Weil
descent suggested by Frey [5], was proposed by Gaudry, Hess, and Smart in 2000
[6]. The GHS attack transfers the discrete logarithm problem (DLP) in the group
of rational points of an elliptic curve E over an extension kd of a finite field k to
the DLP in the Jacobian variety of a new curve C of higher genus over the smaller
definition field k.

The GHS attack has already been investigated extensively. However, although
theoretically interesting, its analysis seemed nontrivial [7], [8] [9], [10], [11], [12],
[13], [14], [15], [16]. The classes of the weak elliptic curves or curves for which the
GHS attack efficiently works have not yet been fully understood. At the beginning,
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it seemed that the class of curves subjected to the GHS attack must be special so
the number of such curves will not be very large. Recently, the existence of certain
large classes of elliptic and hyperelliptic curves which are weak against GHS was
shown [17], [18], [19], [20]. Further results on the subject can be found in [21],
[22], [23].

In modern cryptography, one of the most efficient and reliable approaches for
the security analysis of a particular cryptosystem is (particularly if the security is
not theoretically provable) to apply every possible attacks to it in order to find
its weak point. Only systems which have resisted all such attacks can be trusted
in practical usage. Thus it is both important and interesting to implement GHS
attack to these weak curves.

A GHS attack consists of three steps: finding a covering curve C/k of an
elliptic curve E/kd where kd is the degree d extension of a finite field k; transferring
the discrete logarithm on E/kd to the Jacobian J(C)/k; and finally, applying an
index calculus algorithm to solve the discrete logarithm in J(C)/k. As to the first
step, it seems to be nontrivial to find the defining equation of a weak curve E/kd.
Certain cases were discussed in [14], [15], [17]. For the second step, although
a general strategy using norm-conorm map is well known, efficient and explicit
implementation of the strategy does not seem to be available and appear to be
nontrivial.

In this paper, we show explicit procedures for the first two steps of the GHS
attack against two large classes of the elliptic curves over cubic extension fields of
odd characteristic. These two classes, called Type I and Type II curves have been
obtained in [17][18][19][20], both of them have non-hyperelliptic covering curves of
genus three, which are subjected to Diem’s double-large-prime attack. We present
an algorithm to explicitly construct these covering curves C over k from the elliptic
curves E over the cubic extension of k with odd characteristic. Then an algorithm
is given to map the rational point on the elliptic curve E to the divisor of the
covering curve C, in order to transfer the DLP. In the appendix, we also present
an algorithm to test if a Type I or II curve is hyperellipic. These algorithms are
implemented and examples are shown.

The first and third authors would like to dedicate the publication of this work
to their friend, colleague, and collaborator, Fumiyuki Momose.

2. Weak Covering C over k3, chark �= 2

Let k = Fq be a finite field of odd characteristic, and kd = Fqd .
We consider the GHS attack against an algebraic curve C0/kd with genus g0 =

g(C0). A special case is when g0 = 1 and C0 = E/kd is an elliptic curve.
Assume there exists an algebraic curve C/k such that

π/kd : C −→ C0(2.1)

is a covering defined over kd, which induces the map

π∗/kd : Jac(C) −→ Jac(C0).(2.2)

Also assume the restriction of π∗ onto k

Re(π∗)/k : Jac(C) −→ Rekd/k(Jac(C0))(2.3)

defines an isogeny over k. Then C has genus g(C) = dg0. Here, Rekd/k(Jac(C0)) is
the Weil restriction of Jac(C0) with respect to extension field kd/k.
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Throughout this paper, we will assume that g0 = 1, d = 3, char(k) �= 2.
According to [17][18][19][20], the elliptic curves C0 which have weak covering

C as genus three nonhyperelliptic curves can be divided into two types.

C0/k3 : y2 = (x− α)(x− αq)(x− β)(x− βq)(2.4)

Type I : α, β ∈ k3\k, #{α, αq, β, βq} = 4(2.5)

Type II : α ∈ k6\(k2 ∪ k3), β = αq3(2.6)

These elliptic curves can be transformed to the following Legendre canonical forms:

• Type I:

C0/k3 : y2 = x(x− 1)(x− λ), λ =
(β − αq)(βq − α)

(β − α)(βq − αq)
(2.7)

• Type II:

C0/k3 : y2 = Nk6/k3
(β − αq)x(x− 1)(x− λ), λ = Nk6/k3

(
αq − α

αq − β

)
(2.8)

And #{λ} ≈ 1
2q

3.

The discrete logarithm on C0/k3 has a complexity of Õ(q4/3) against the Pol-
lard’s rho method. On the other hand, apply Diem’s algorithm to nonhyperellitic
C, the complexity of discrete logarithm reduces to Õ(q).

Here we use M · γ to denote a PGL2-action as follows.

M :=

(
a b
c d

)
∈ PGL2(k), γ ∈ k M · γ :=

aγ + b

cγ + d
.(2.9)

Now, define

μ :=

(
αq −α
1 −1

)
· λ,(2.10)

A :=

(
−μ+ α+ αq −α1+q

1 −μ

)
,(2.11)

B := σ2

A σA A.(2.12)

According to Lemma 7, 1,2 [20], the necessary and sufficient condition for C0 to be
Type I is that the quadratic equation

B · β = β(2.13)

has a solution β.
Besides, by Lemma 4 [20], the covering curve C of such a curve C0 is hyperel-

liptic if and only if

(2.14) β = A · α, ∃A ∈ GL2(k), TrA = 0.

Hereafter we assume that α and β do not satisfy Condition (2.14). Then, the
curve C is a nonhyperelliptic curve over k of genus three. We show in the appendix
an algorithm to test if C is hyperelliptic.

In this paper, we describe the following two algorithms:
(i) To construct the curve C/k, or to find the defining equation explicitly from

the given curve C0/kd.
(ii) To transfer the DLP over C0/kd to the DLP over J(C/k).
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3. How to construct C/k from C0/kd

Assume C is a nonhyperelliptic curve of genus g = dg0 = 3. Thus, its canonical
embedding is a quartic curve in P

2. Let σ be a q-th power Frobenius map satisfying

(3.1) l(x) =
n∑

i=1

aix
i �−→ σl(x) =

n∑
i=1

ai
qxi (∀l(x) ∈ kd[x]).

The embedding map is

C ↪→ P
2(3.2)

P �−→
(
ω(P ) : σω(P ) : σ2

ω(P )
)

(3.3)

where ω = dx
y and its conjugates generate the first cohomology group

H0(C/k3,Ω
1) = 〈 ω, σω, σ2

ω 〉.(3.4)

We use hereafter the correspondence

(3.5) ω ←→ X, σω ←→ Y, σ2

ω ←→ Z.

The Galois action on H0(C/k3,Ω
1) is a cyclic shift.

Now we consider the automorphism group of the first coholomogy group

Aut(H0(C/k3,Ω
1)) = {id, φ, σφ, σ2

φ}.(3.6)

The identity on H0(C/k3,Ω
1) is

id :

⎧⎨
⎩

X �−→ X
Y �−→ Y
Z �−→ Z

.(3.7)

The bi-elliptic involution changes the signs of both Y and Z

φ :

⎧⎨
⎩

X �→ X
Y �−→ −Y
Z �−→ −Z

.(3.8)

Then the bi-elliptic involution under the Galois action of σ has the following
form

σφ :

⎧⎨
⎩

X �−→ −X
Y �−→ Y
Z �−→ −Z

,(3.9)

and the bi-elliptic involution under the action of σ2 has the following form

σ2

φ :

⎧⎨
⎩

X �−→ −X
Y �−→ −Y
Z �−→ Z

.(3.10)
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3.1. Defining equation of C/k3. The quartic curve C/k3 has its defining
equation invariant under Gal(k3/k), thus in the following symmetric form.

C/k3 : aX4 + aqY 4 + aq
2

Z4(3.11)

+bX3Y + bqY 3Z + bq
2

Z3X

+cX3Z + cqY 3X + cq
2

Z3Y

+dX2Y 2 + dqY 2Z2 + dq
2

Z2X2

+eX2Y Z + eqXY 2Z + eq
2

XY Z2 = 0.

Since the defining equation F = 0 of C is invariant under the action of automor-

phisms of Aut(H0(C,Ω1)), C will also be defined by F+φ(F )+σφ(F )+σ2

φ(F ) = 0.

On the other hand, since φ, σφ, σ2

φ change the signs of two variables, the
terms with odd degrees of variables are canceled each other.

Thus the equation of the curve C/k3 is in the following form.

C/k3 : aX4 + aqY 4 + aq
2

Z4 + bX2Y 2 + bqY 2Z2 + bq
2

Z2X2 = 0.(3.12)

a, b ∈ k3

3.2. Evaluation of a and b. To find the coefficients a and b in (3.12), we
substitute into it X = dx

y , Y = dx
σy , Z = dx

σ2y
.

Since

1

y2
=

(x− αq2)(x− βq2)

Nk3/k((x− α)(x− β))
,(3.13)

1

(σy)2
=

(x− α)(x− β)

Nk3/k((x− α)(x− β))
,(3.14)

we substitute these into (3.12) to obtain

Trk3/k(a(x− αq2)2(x− βq2)2) +(3.15)

Trk3/k(b(x− α)(x− αq2)(x− β)(x− βq2)) = 0.

3.2.1. Type I. From expansion of (3.15) we can express the coefficients of each
xi as

x4 : Tr(a) + Tr(b)

x3 : −2Tr(a(αq2 + βq2))− Tr(b(α+ β + αq2 + βq2))

x2 : Tr(a(α2q2 + 4αq2βq2 + β2q2)) + Tr(b{αq2+1 + (α+ αq2)(β + βq2) + βq2+1})
x : −2Tr(a(α2q2βq2 + αq2β2q2))− Tr(b{αq2+1(β + βq2) + βq2+1(α+ αq2)})
1 : Tr(aα2q2β2q2) + Tr(bαq2+1βq2+1)

which are identically zeros.
In order to calculate a, b explicitly, we express a, b ∈ k3 on a k-basis of k3.

a = a0 + a1ε+ a2ε
2 (a0, a1, a2 ∈ k)(3.16)

b = b0 + b1ε+ b2ε
2 (b0, b1, b2 ∈ k)(3.17)

where ε generates k3 = k(ε).
Belows, we express the coefficients of xi in (3.15) in terms of ai, bi.
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First, in the coefficient of x4, Tr(a) is given by

Tr(a) = 3a0 +Tr(ε)a1 +Tr(ε2)a2.(3.18)

Similarly,

Tr(b) = 3b0 +Tr(ε)b1 +Tr(ε2)b2.(3.19)

Next, in the coefficient of x3, Tr(a(αq2 + βq2)) is given by

Tr(a(αq2 + βq2)) = (αq2 + βq2)(a0 + a1ε+ a2ε
2)(3.20)

+(α+ β)(a0 + a1ε
q + a2ε

2q)

+(αq + βq)(a0 + a1ε
q2 + a2ε

2q2)

= Tr(α+ β)a0 +Tr((α+ β)εq)a1 +Tr((α+ β)ε2q)a2.

Tr(b(α+ β + αq2 + βq2)) is given by

Tr(b(α+ β + αq2 + βq2)) = (α+ β + αq2 + βq2)(b0 + b1ε+ b2ε
2)(3.21)

+(αq + βq + α+ β)(b0 + b1ε
q + b2ε

2q)

+(αq2 + βq2 + αq + βq)(b0 + b1ε
q2 + b2ε

2q2)

= Tr(αq + βq + α+ β)b0 +Tr((αq + βq + α+ β)εq)b1

+Tr((αq + βq + α+ β)ε2q)b2.

In the coefficient of x2, Tr(a(α2q2 + 4αq2βq2 + β2q2)) is given by

Tr(a(α2q2 + 4αq2βq2 + β2q2)) = Tr(α2 + 4αβ + β2)a0 +(3.22)

Tr((α2 + 4αβ + β2)εq)a1 +Tr((α2 + 4αβ + β2)ε2q)a2.

and Tr(b{αq2+1 + (α+ αq2)(β + βq2) + βq2+1}) is given by

Tr(b{αq2+1 + (α+ αq2)(β + βq2) + βq2+1}) =(3.23)

Tr(αq+1 + (αq + α)(βq + β) + βq+1)b0

+Tr({αq+1 + (αq + α)(βq + β) + βq+1}εq)b1
+Tr({αq+1 + (αq + α)(βq + β) + βq+1}ε2q)b2.

In the coefficient of x, Tr(a(α2q2βq2 + αq2β2q2)) is given by

Tr(a(α2q2βq2 + αq2β2q2)) = Tr(α2β + αβ2)a0(3.24)

+Tr((α2β + αβ2)εq)a1

+Tr((α2β + αβ2)ε2q)a2.

and Tr(b{αq2+1(β + βq2) + βq2+1(α+ αq2)}) is given by

Tr(b{αq2+1(β + βq2) + βq2+1(α+ αq2)}) =(3.25)

Tr(αqβq(α+ β) + αβ(αq + βq))b0

+Tr({αqβq(α+ β) + αβ(αq + βq)}εq)b1
+Tr({αqβq(α+ β) + αβ(αq + βq)}ε2q)b2.

In the constant term of (3.15), Tr(aα2q2β2q2) is given by

Tr(aα2q2β2q2) = Tr(α2β2)a0 +Tr(α2β2εq)a1 +Tr(α2β2ε2q)a2.(3.26)
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and Tr(bαq2+1βq2+1) is given by

Tr(bαq2+1βq2+1) =(3.27)

Tr(αq+1βq+1)b0 +Tr(αq+1βq+1εq)b1 +Tr(αq+1βq+1ε2q)b2.

Combining the equations above yields the following system of simultaneous lin-
ear equations.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3a0 +Tr(ε)a1 +Tr(ε2)a2 + 3b0 +Tr(ε)b1 +Tr(ε2)b2 = 0

2Tr(α+ β)a0 + 2Tr((α+ β)εq)a1 + 2Tr((α+ β)ε2q)a2
+Tr(αq + βq + α+ β)b0

+Tr((αq + βq + α+ β)εq)b1
+Tr((αq + βq + α+ β)ε2q)b2 = 0

Tr(α2 + 4αβ + β2)a0 +Tr((α2 + 4αβ + β2)εq)a1
+Tr((α2 + 4αβ + β2)ε2q)a2

+Tr(αq+1 + (αq + α)(βq + β) + βq+1)b0
+Tr({αq+1 + (αq + α)(βq + β) + βq+1}εq)b1

+Tr({αq+1 + (αq + α)(βq + β) + βq+1}ε2q)b2 = 0

2Tr(α2β + αβ2)a0 + 2Tr((α2β + αβ2)εq)a1 + 2Tr((α2β + αβ2)ε2q)a2
+Tr(αqβq(α+ β) + αβ(αq + βq))b0

+Tr({αqβq(α+ β) + αβ(αq + βq)}εq)b1
+Tr({αqβq(α+ β) + αβ(αq + βq)}ε2q)b2 = 0

Tr(α2β2)a0 +Tr(α2β2εq)a1 + Tr(α2β2ε2q)a2
+Tr(αq+1βq+1)b0 +Tr(αq+1βq+1εq)b1 +Tr(αq+1βq+1ε2q)b2 = 0

From the equation (3.12), we can assume a0 = 1. Accordingly, the simultaneous
linear equations can be written as

(3.28)

⎛
⎜⎜⎜⎜⎝

d11 d12 d13 d14 d15
d21 d22 d23 d24 d25
d31 d32 d33 d34 d35
d41 d42 d43 d44 d45
d51 d52 d53 d54 d55

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

a1
a2
b0
b1
b2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

e1
e2
e3
e4
e5

⎞
⎟⎟⎟⎟⎠ .

where dij are the coefficients of a1, a2, b0, b1, b2 in each equation and ei are the
negations of the coefficients of a0.

Thus a1, a2, b0, b1, b2 can be obtained by solving the linear system of equa-
tions for the given set of α, β and ε.

3.2.2. Type II. For Type II curves, the coefficients of xi in Equation (3.15) are
as follows.

First, the coefficient of x4 is

(3.29) Tr(a) + Tr(b) = 3a0 +Tr(ε)a1 +Tr(ε2)a2 + 3b0 +Tr(ε)b1 + Tr(ε2)b2 = 0.
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Next, the coefficient of x3 is as follows:

2Tr(a(αq2 + βq2)) + Tr(b(α+ β + αq2 + βq2)) = 2Tr(Trk6/k3
(α))a0(3.30)

+2Tr(Trk6/k3
(α)εq)a1

+2Tr(Trk6/k3
(α)ε2q)a2

+Tr({Trk6/k3
(α)}q +Trk6/k3

(α))b0

+Tr(
[
{Trk6/k3

(α)}q +Trk6/k3
(α)

]
εq)b1

+Tr(
[
{Trk6/k3

(α)}q +Trk6/k3
(α)

]
ε2q)b2 = 0.

The coefficient of x2 is

Tr(a(α2q2 + 4αq2βq2 + β2q2)) +(3.31)

Tr(b{αq2+1 + (α+ αq2)(β + βq2) + βq2+1})
= Tr({Trk6/k3

(α)}2 + 2Nk6/k3
(α))a0

+Tr(
[
{Trk6/k3

(α)}2 + 2Nk6/k3
(α)

]
εq)a1

+Tr(
[
Trk6/k3

(α)2 + 2Nk6/k3
(α)

]
ε2q)a2

+Tr({Trk6/k3
(α)}q+1 + {Nk6/k3

(α)}q +Nk6/k3
(α))b0

+Tr(
[
{Trk6/k3

(α)}q+1 + {Nk6/k3
(α)}q +Nk6/k3

(α)
]
εq)b1

+Tr(
[
{Trk6/k3

(α)}q+1 + {Nk6/k3
(α)}q +Nk6/k3

(α)
]
ε2q)b2 = 0.

The coefficient of x is

2Tr(a(α2q2βq2 + αq2β2q2)) + Tr(b{αq2+1(β + βq2) + βq2+1(α+ αq2)})(3.32)

= 2Tr(Trk6/k3
(α)Nk6/k3

(α))a0 + 2Tr(Trk6/k3
(α)Nk6/k3

(α)εq)a1

+2Tr(Trk6/k3
(α)Nk6/k3

(α)ε2q)a2

+Tr(Trk6/k3
(α){Nk6/k3

(α)}q + {Trk6/k3
(α)}qNk6/k3

(α))b0

+Tr(
[
Trk6/k3

(α){Nk6/k3
(α)}q + {Trk6/k3

(α)}qNk6/k3
(α)

]
εq)b1

+Tr(
[
Trk6/k3

(α){Nk6/k3
(α)}q + {Trk6/k3

(α)}qNk6/k3
(α)

]
ε2q)b2 = 0.

The constant term of (3.15) for Type II curves is

Tr(aα2q2β2q2) + Tr(bαq2+1βq2+1) =(3.33)

Tr({Nk6/k3
(α)}2)a0 +Tr({Nk6/k3

(α)}2εq)a1
+Tr({Nk6/k3

(α)}2ε2q)a2 +Tr({Nk6/k3
(α)}q+1)b0

+Tr({Nk6/k3
(α)}q+1εq)b1 +Tr({Nk6/k3

(α)}q+1ε2q)b2 = 0.

Then one can also build and solve a system of simultaneous linear equations,
as in the case of Type I, in a1, a2, b0, b1, b2.

Hereafter, we assume that a, b are known.

3.3. Definition equation of C/k. Notice that X,Y, Z correspond to a basis

ω, σω, σ2

ω of H0(C/k3,Ω
1). Since C is defined over k, the next step is to find a

basis of H0(C/k,Ω1).
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The necessary and sufficient condition for {ω1, ω2, ω3} to be such a basis, i.e.
H0(C/k,Ω1) = 〈ω1, ω2, ω3〉 is

ω = γω1 + δω2 + ψω3,
∃γ, δ, ψ ∈ k3(3.34)

such that det(U) �= 0. where U :=

⎛
⎝ γ δ ψ

γq δq ψq

γq2 δq
2

ψq2

⎞
⎠ .(3.35)

We will use the following correspondence.

ω1 ←→ x, ω2 ←→ y, ω3 ←→ z(3.36)

Then X, Y, Z are expressed as

(3.37)

⎧⎨
⎩

X = γx+ δy + ψz
Y = γqx+ δqy + ψqz

Z = γq2x+ δq
2

y + ψq2z

.

or ⎛
⎝ X

Y
Z

⎞
⎠ = U

⎛
⎝ x

y
z

⎞
⎠ .(3.38)

Given γ, δ, ψ, one substitutes (3.37) into (3.12) to obtain a definition equation
of the curve C/k as

C/k : Tr(aγ4 + bγ2q+2)x4(3.39)

+Tr(4aγ3δ + {2γq+2δq + 2γ2q+1δ}b)x3y

+Tr(4aγ3ψ + {2γq+2ψq + 2γ2q+1ψ}b)x3z

+Tr(6aγ2δ2 + {γ2δ2q + γ2qδ2 + 4γq+1δq+1}b)x2y2

+Tr(12aγ2δψ + {2γ2δqψq + 4γq+1δψq + 2γ2qδψ + 4γq+1δqψ}b)x2yz

+Tr(6aγ2ψ2 + {γ2ψ2q + γ2qψ2 + 4γq+1ψq+1}b)x2z2

+Tr(4aγδ3 + {2γqδq+2 + 2γδ2q+1}b)xy3

+Tr(12aγδ2ψ + {2γqδ2ψq + 4γδq+1ψq + 4γqδq+1ψ + 2γδ2qψ}b)xy2z
+Tr(12aγδψ2 + {2γqδqψ2 + 2γδψ2q + 4γqδψq+1 + 4γδqψq+1}b)xyz2

+Tr(4aγψ3 + {2γqψq+2 + 2γψ2q+1}b)xz3

+Tr(aδ4 + bδ2q+2)y4

+Tr(4aδ3ψ + {2δq+2ψq + 2δ2q+1ψ}b)y3z
+Tr(6aδ2ψ2 + {δ2ψ2q + δ2qψ2 + 4δq+1ψq+1}b)y2z2

+Tr(4aδψ3 + {2δqψq+2 + 2δψ2q+1}b)yz3

+Tr(aψ4 + bψ2q+2)z4

= 0.

3.4. Find a basis of H0(C/k,Ω1) to determine γ, δ and ψ. In this section,
we give explicitly a basis of H0(C/k,Ω1) and determine γ, δ and ψ.
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Define

ω1 = ω + σω + σ2

ω(3.40)

ω2 = εω + εq σω + εq
2 σ2

ω(3.41)

ω3 = ε2ω + ε2q σω + ε2q
2 σ2

ω.(3.42)

Then ⎛
⎝ x

y
z

⎞
⎠ = V

⎛
⎝ X

Y
Z

⎞
⎠ .(3.43)

The Vandermonde’s matrix

(3.44) V =

⎛
⎝ 1 1 1

ε εq εq
2

ε2 ε2q ε2q
2

⎞
⎠

has its determinant as

det(V ) = N(ε− εq) = (ε− εq)(εq − εq
2

)(εq
2 − ε) = N(ε− εq) �= 0(3.45)

then {ωi} is a basis of H0(C/k,Ω1). We can take U = V −1 or⎛
⎝ X

Y
Z

⎞
⎠ = U

⎛
⎝ x

y
z

⎞
⎠(3.46)

and the inverse matrix can be expressed by

(3.47) U = V −1 =

⎛
⎝ γ δ ψ

γq δq ψq

γq2 δq
2

ψq2

⎞
⎠ .

Thus, one has

γ =
ε2q

2+q − εq
2+2q

det(V )
, δ =

ε2q − ε2q
2

det(V )
and ψ =

εq
2 − εq

det(V )
.(3.48)

Now we have a, b, x, y, z and γ, δ, ψ explicitly thus the definition equation of
C/k.

4. Transfer DLP from C0/k3 to C/k

The transfer of DLP from C0/kd to C/k is usually assumed to follow the norm-
conorm map. However, previous works on the subject do not give this map explicitly
and its description is not trivial. Here we use the language of divisors instead of
function fields to give an explicit map from Jac(C0/k3) to Jac(C/k).

The transfer map consists of a trace and a pullback map.
Denote by π∗ the pullback map induced by the cover map π/k3 : C → C0. i.e.,

π∗ : Jac(C0/k3) → Jac(C/k3)(4.1)

P − P0 �→ DP −DP0

where P − P0 is a divisor of Jac(C0/k3) and DP =
∑

i eiQi a divisor of Jac(C/k3)
s.t. π(Qi) = P, ei is the ramification index at Qi.

This map corresponds to the conorm map of the function fields.
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Denote the trace map of divisor groups as (Here the trace is not on k3/k as
before but on the divisor group)

Trk3/k : Jac(C/k3) → Jac(C/k)(4.2)

DP �→ DP + σDP + σ2

DP

which corresponds to the norm map of the function fields.
Then the transfer map is a homomorphism defined by the composition of π∗

with the trace map

χ := Trk3/k ◦ π∗ : Jac(C0/k3) −→ Jac(C/k).(4.3)

Given P1, P2, two points on C0 such that P2 ∈ 〈P1〉, the elliptic curve discrete
logarithm problem consists in finding an integer λ suchthat P2 = λP1. Since the
group of points on C0 and the group Jac(C0) are isomorphic, we can transfer from
P2 = λP1 to

(4.4) (P2 − P∞) = λ(P1 − P∞)

on Jac(C0) where P∞ is the point at infinity.
Finally, the homomorphism χ transfers the above discrete logarithm to the

discrete logarithm on Jac(C/k) which is to find λ such that

(4.5) (χ(P2)− χ(P∞)) = λ(χ(P1)− χ(P∞)).

So, it suffices to find π.
In fact, π can be factored into

(4.6) π/k3 = π1 ◦ π2

where π1/k3 is the map from C/k3 defined by (3.12) to C0/k3 and π2/k3 is an
isomorphism from C/k3 defined by the equation (3.39) of C/k to C/k3 defined by
(3.12), which can be represented by (3.46) where the matrix U is known.

We find π1 as follows.
Let s, t be s = Y

X , t = Z
X then (3.12) becomes

(4.7) C : a+ aqs4 + aq
2

t4 + bs2 + bqs2t2 + bq
2

t2 = 0.

Additionally let u, v be u = s2, v = t2 then (4.7) becomes

(4.8) a+ aqu2 + aq
2

v2 + bu+ bquv + bq
2

v = 0

which can be identified with P
1(k3), while C is its (2, 2)-covering.

Below, we first consider the case of Type I curves.

4.1. Type I. Since (4.8) is a genus zero curve, we choose the point on it

(u0, v0), u0 = (αβ)−q2+1, v0 = (αβ)−q2+q by letting x = 0 in u and v.
Then a point (u, v) of (4.8) are uniquely determined by a line which has slope

l and passes through the point (u0, v0) = ((αβ)−q2+1, (αβ)−q2+q) and the point
(u, v).

The equation of the line is

(4.9) v − (αβ)−q2+q = l(u− (αβ)−q2+1).

The slope l can be written as

(4.10) l =
v − (αβ)−q2+q

u− (αβ)−q2+1
.
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Substituting u =
(x− α)(x− β)

(x− αq2)(x− βq2)
, v =

(x− αq)(x− βq)

(x− αq2)(x− βq2)
into (4.9), the de-

nominator of l becomes

u− (αβ)−q2+1 =(4.11)

{1− (αβ)−q2+1}x2 + (−α− β + αβ−q2+1 + α−q2+1β)x

(x− αq2)(x− βq2)
.

The numerator of l becomes

v − (αβ)−q2+q =(4.12)

{1− (αβ)−q2+q}x2 + (−αq − βq + αqβ−q2+q + α−q2+qβq)x

(x− αq2)(x− βq2)
.

In the sequal,

l =
{1− (αβ)−q2+q}x+ (−αq − βq + αqβ−q2+q + α−q2+qβq)

{1− (αβ)−q2+1}x+ (−α− β + αβ−q2+1 + α−q2+1β)
.(4.13)

Define G11, G12, G21, G22 ∈ k3

G11 := 1− (αβ)−q2+q(4.14)

G12 := −αq − βq + αqβ−q2+q + α−q2+qβq(4.15)

G21 := 1− (αβ)−q2+1(4.16)

G22 := −α− β + αβ−q2+1 + α−q2+1β.(4.17)

Then l can be expressed by the action of the matrix G on x. Indeed, rewrite (4.13)
as

(4.18) l = G · x s.t. G :=

(
G11 G12

G21 G22

)
∈ GL2(k3).

In particular, x is now the image of l under the action of G−1:

x = G−1l =
G22l −G12

−G21l +G11
.(4.19)

Now that we expressed x in terms of l, we try to express x directly in terms of
X,Y and Z.

Substituting s =
Y

X
, t =

Z

X
into l, one has

l =
Z2 − (αβ)−q2+qX2

Y 2 − (αβ)−q2+1X2
.(4.20)

Therefore

(4.21) x = G−1 · l = G22Z
2 −G22(αβ)

−q2+qX2 −G12Y
2 +G12(αβ)

−q2+1X2

−G21Z2 +G21(αβ)−q2+qX2 +G11Y 2 −G11(αβ)−q2+1X2
.

To find y, one can use the defining equation of Type I curve C0 : y2 = (x −
α)(x− αq)(x− β)(x− βq),

(x− α)(x− αq)(x− β)(x− βq)
σyσ2y

= st.(4.22)
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Then

(4.23) y =
stNk3/k(y)

(x− α)(x− αq)(x− β)(x− βq)
.

To find Nk3/k(y), use the definition of C0 again

Nk3/k(y
2) = Nk3/k(x− α)2Nk3/k(x− β)2.(4.24)

Now Nk3/k(y) is expressed in terms of x as

(4.25) Nk3/k(y) = ±Nk3/k(x− α)Nk3/k(x− β).

Hence, y can be written as

y = ±st(x− αq2)(x− βq2)(4.26)

and we use y = st(x− αq2)(x− βq2) hereafter.
Similar to x, y can also be expressed in terms of X, Y and Z.

y = st(x− αq2)(x− βq2)(4.27)

=
Y Z

X2
(x− αq2)(x− βq2).

From the coordinates x, y of the affine curve C0, one can obtain projective
coordinates of C0 as follows.

First, denote x as a fraction x =
x2

x1
. Then x, y and z can be expressed as

(4.28) x =
x2

x1
, y =

Y Z

X2

(
x2

x1
− αq2

)(
x2

x1
− βq2

)
, z = 1.

Thus one obtains the projective coordinates of C0 as

(4.29) x = x1x2X
2, y = Y Z(x2 − αq2x1)(x2 − βq2x1), z = x1

2X2.

Now π1 can be expressed as

π1 : C → C0

(X, Y, Z) �→ (x, y, z)

such that

x = {−(αβ)−2q2+2G11G12 + (αβ)−2q2+q+1G11G22(4.30)

+(αβ)−2q2+q+1G12G21 − (αβ)−2q2+2qG21G22}X6

+{2(αβ)−q2+1G11G12 − (αβ)−q2+qG11G22 − (αβ)−q2+qG12G21}X4Y 2

+{−(αβ)−q2+1G11G22 − (αβ)−q2+1G12G21 + 2(αβ)−q2+qG21G22}X4Z2

−G11G12X
2Y 4 + (G11G22 +G12G21)X

2Y 2Z2 −G21G22X
2Z4,
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y = {(αβ)−q2+2G11
2 + (αβ)−2q2+2(αq2 + βq2)G11G12(4.31)

−2(αβ)−q2+q+1G11G21 − (αβ)−2q2+q+1(αq2 + βq2)G11G22

+(αβ)−2q2+2G12
2 − (αβ)−2q2+q+1(αq2 + βq2)G12G21

−2(αβ)−2q2+q+1G12G22 + (αβ)−q2+2qG21
2

+(αβ)−2q2+2q(αq2 + βq2)G21G22

+(αβ)−2q2+2qG22
2}X4Y Z

+{−2αβG2
11 − 2(αβ)−q2+1(αq2 + βq2)G11G12 + 2(αβ)qG11G21

+(αβ)−q2+q(αq2 + βq2)G11G22 − 2(αβ)−q2+1G12
2

+(αβ)−q2+q(αq2 + βq2)G12G21 + 2(αβ)−q2+qG12G22}X2Y 3Z

+{2αβG11G21 + (αβ)−q2+1(αq2 + βq2)G11G22

+(αβ)−q2+1(αq2 + βq2)G12G21 + 2(αβ)−q2+1G12G22 − 2(αβ)qG21
2

−2(αβ)−q2+q(αq2 + βq2)G21G22 − 2(αβ)−q2+qG22
2}X2Y Z3

+{(αβ)q2G11
2 + (αq2 + βq2)G11G12 +G12

2}Y 5Z

−{2(αβ)q2G11G21 + (αq2 + βq2)G11G22

+(αq2 + βq2)G12G21 + 2G12G22}Y 3Z3

+{(αβ)q2G21
2 + (αq2 + βq2)G21G22 +G22

2}Y Z5,

z = {(αβ)−2q2+2G11
2 − 2(αβ)−2q2+q+1G11G21 + (αβ)−2q2+2qG21

2}X6(4.32)

+{−2(αβ)−q2+1G11
2 + 2(αβ)−q2+qG11G21}X4Y 2

+{2(αβ)−q2+1G11G21 − 2(αβ)−q2+qG21
2}X4Z2

+G11
2X2Y 4 − 2G11G21X

2Y 2Z2 +G21
2X2Z4.

4.2. Type II. Calculation for Type II curves is similar to Type I, what we
need is to confirm that (4.21), (4.27) are defined over k3.

For (4.21), first the entries of the matrix G, G11, G12, G21, G22 become

G11 = 1− {Nk6/k3
(α)}−q2+q(4.33)

G12 = −{Trk6/k3
(α)}q + {Nk6/k3

(α)}q{Trk6/k3
(α)}−q2(4.34)

G21 = 1− {Nk6/k3
(α)}−q2+1(4.35)

G22 = −Trk6/k3
(α) + Nk6/k3

(α){Trk6/k3
(α)}−q2 .(4.36)

Thus x can be expressed as
(4.37)

x =
G22Z

2 −G22{Nk6/k3
(α)}−q2+qX2 −G12Y

2 +G12{Nk6/k3
(α)}−q2+1X2

−G21Z2 +G21{Nk6/k3
(α)}−q2+qX2 +G11Y 2 −G11{Nk6/k3

(α)}−q2+1X2

which has only coefficients in k3.
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Next, (4.27) becomes

y =
Y Z

X2
(x− αq2)(x− βq2)(4.38)

=
Y Z

X2
(x2 − {Trk6/k3

(α)}q2x+ {Nk6/k3
(α)}q2)

which also has coefficients in k3. Thus we are done.

5. Computer experiments

The computation environment as follows.

• OS: Windows XP Professional SP2
• CPU: Pentium4 3.2GHz
• Memory: 1.5GB
• Programming language: Magma ver.2.13-14

We start with an elliptic curve E in Legendre form and a base point PE of E.
PE and its m-multiple mPE are mapped to points P and mP on an elliptic curve
C0 which is isomorphic to E. Then we find the associated χ(P ) and χ(mP ) in
Jac(C).

5.1. Type I.

q = 1152921504606851053,

k = Fq, k3 = k[x]/〈x3 − 2〉, ∃ε ∈ k3 s.t. ε3 − 2 = 0

λ = 685592167687491848ε2 + 685592167687491847ε+ 3

The elliptic curve E is in projective Legendre form.

E/k3 : y2z = x(x− z)(x− λz)

5.1.1. Testing for Type I curves. Let α = ε+ 1, then

A =

(
a11 a12
a21 a22

)

a11 = 238798614356861922ε+ 457061445124994566

a12 = 685592167687491848ε2 + 685592167687491847ε+

1152921504606851052

a21 = 1

a22 = 924390782044353769ε+ 457061445124994564

B =

(
b11 b12
b21 b22

)

b11 = 2ε2 + ε+ 477597228713723848

b12 = 1152921504606851050ε2 + 1152921504606851050ε+

1152921504606851044

b21 = ε2 + ε+ 1152921504606851052

b22 = 1152921504606851051ε2 + 1152921504606851052ε+

477597228713723844

The quadratic equation b21x
2 + (b22 − b11)x− b12 = 0 has two solutions:{

ε2+2ε+1, 733677321113450670ε2+524055229366750479ε+209622091746700193
}
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Therefore, E is Type I. Take β = ε2+2ε+1 = α2, we know that E is k3-isomorphic
to

C0/k3 : y2z2 = (x− αz)(x− αqz)(x− βz)(x− βqz).

In fact, to test for Type I curves, we chose λ = 2, ..., 10001, the average time to test
each curve was 0.0356858 second. Among these curves, 5018 were of Type I.

5.1.2. Finding the defining equation of the covering curve C/k. The covering
C/k of C0/k3 is found using the algorithm shown in Section 4.

C/k : 997145058967064651x3y + 588586465123877340x3z

+907131123326719637x2y2 + 896716725805328597x2yz

+973749290975691411x2z2 + 1024819115206089825xy3

+280456204442426083xy2z + 318544658202842297xyz2

+1088870309906470439xz3 + 973749290975691411y4

+294293232561938670y3z + 1120895907256660746y2z2

+537516640893478926yz3 + 975051090665865291z4 = 0

To find the C/k from E takes 0.500 second, where 0.063 second is used to test if E
is of Type I, the remaining 0.437 is used to build C/k.

5.1.3. Transferring the DLP. The isomorphism from E to C0, ι : E → C0 is

ι : E → C0

(x : y : z) �→ (xC0
: yC0

: zC0
)

xC0
= (364080906763379389ε2 + 963836771592621382ε

+45113745901700524)x2 + (697163568297605614ε2

+434818842429256188ε+ 651968585745464837)xz

+(1110165463009250121ε2 + 159411805327734998ε

+1139314830835562614)z2,

yC0
= (103276516251305235ε2 + 814915306056127686ε

+861572657639767622)yz,

zC0
= (883436713213250245ε2 + 38740486277729303ε

+1108413203079573589)x2 + (614045874632256899ε2

+476034365815665715ε+ 725151688441932395)xz

+(1080996664374642930ε2 + 29168798634607191ε

+130243006693127807)z2.
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The inverse map ι−1 is

ι−1 : C0 → E

(x : y : z) �→ (xE : yE : zE)

xE = (228530722562497283ε2 + 924390782044353770ε

+228530722562497284)x2 + (467329336919359205ε2

+218262830768132642ε+ 1152921504606851049)xz

+(467329336919359205ε2 + 249066506151226564ε

+685592167687491850)z2,

yE = (1098530568356793848ε2 + 364091151918511417ε

+156909573516618064)yz,

zE = x2 + (218262830768132643ε+ 1152921504606851051)xz

+(685592167687491847ε2 + 934658673838718410ε+ 1)z2.

For example, take a base point on E

PE = (326484750616207568ε2 + 398950984132538563ε

+1105635074365709877 : 155216221479156187ε2

+496624914529310471ε+ 708459555015860335 : 1)

which has a prime order :

ord(PE) = 383123885216476279036490868125406665879768163968774759.

Under the isomorphism ι, PE is mapped to P = ι(PE) on C0.

P = (382583549840633528ε2 + 1049745021810473522ε

+527223886793925136 : 297304679459601150ε2

+626540460794459518ε+ 906489884274840212 : 1).

From P one obtaines DP and χ(P ) as follows:

DP = Q1 +Q2

q1 = 712456629299217053ε2 + 953676660329800786ε+ 707524424701837646

q2 = 666557349447958527ε2 + 352353429259986813ε+ 1073895093206451353

q3 = 805061362249374584ε2 + 1042799979746437227ε+ 880598497458186947

q4 = 527740077639497471ε2 + 947552956030900685ε+ 390269122338929978

Q1 = (q1 : q2 : 1) ∈ C/k3, Q2 = (q3 : q4 : 1) ∈ C/k3

χ(P ) = DP + σDP + σ2

DP

σDP = σQ1 +
σQ2,

σ2

DP = σ2

Q1 +
σ2

Q2

σQ1 = (q1
q : q2

q : 1), σQ2 = (q3
q : q4

q : 1)

σ2

Q1 = (q1
q2 : q2

q2 : 1), σ2

Q2 = (q3
q2 : q4

q2 : 1).

The time needed to map PE to χ(P ) is 17.578 seconds.
Now let

m = 323265910321268664514129224009489670151908972955376519.
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E � mPE = (792310221862816838ε2 + 180893695299760122ε

+952490131358998041 : 669346193997384009ε2

+488209130112427093ε+ 787028498315590410 : 1).

This mPE is also mapped to C0 � mP = ι(mPE),

mP = (306607799499267855ε2 + 445518833785785499ε+ 141583952331989134

: 585481570718467983ε2 + 205882509018091440ε+ 573359644129055255 : 1).

One then maps mP to DmP and χ(mP ) as follows.

DmP = Q1 +Q2

q1 = 1062802094539799458ε2 + 296237055839945308ε+ 1057758671244525799

q2 = 344189168181796656ε2 + 529982675029763103ε+ 1134629167237810190

q3 = 666903385786606500ε2 + 44288219254827598ε+ 362073667770795536

q4 = 8690116147489311ε2 + 330243703134573774ε+ 1048131323955608138

Q1 = (q1 : q2 : 1) ∈ C/k3, Q2 = (q3 : q4 : 1) ∈ C/k3

χ(mP ) = DmP + σDmP + σ2

DmP

σDmP = σQ1 +
σQ2,

σ2

DmP = σ2

Q1 +
σ2

Q2

σQ1 = (q1
q : q2

q : 1), σQ2 = (q3
q : q4

q : 1)

σ2

Q1 = (q1
q2 : q2

q2 : 1), σ2

Q2 = (q3
q2 : q4

q2 : 1)

The time taken to compute χ(mP ) from mPE is 9.859 seconds.
In fact, given {2iPE |0 ≤ i ≤ 999}, the average time to compute χ(2iP ) is

17.8545 seconds.

5.2. Type II. Assume

k = Fq, q = 1152921504606850871

k[x] � a(x) = x3 + 943550857826445658x2 + 1018916892242739535x

+475736851389393367

k3 = k[x]/〈a(x)〉, ∃ε ∈ k3 s.t. a(ε) = 0

k3[x] � b(x) = x2 + (595455718590278195ε2 + 926100813892756385ε

+508785546940475093)x+ 463189347482206220ε2

+936329421988414364ε+ 172788951250122324

k6 = k3[x]/〈b(x)〉, ∃η ∈ k6 s.t. b(η) = 0

α = η + ε, β = αq3

and consider the three isomorphic elliptic curves:

C0/k3 : y2z2 = (x− αz)(x− αqz)(x− βz)(x− βqz)

Eλ/k3 : y2z = Nk6/k3
(β − αq)x(x− z)(x− λz), λ = Nk6/k3

(
αq − α

αq − β

)

E/k3 : y2z = x(x− z)(x− λz), λ = Nk6/k3

(
αq − α

αq − β

)
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5.2.1. Finding defining equation of the covering curve C/k. Using the algo-
rithm in Section 4, one finds the defining equation of C/k as follows.

C/k : 261966538672930061x4 + 719520632819288417x3y

+711206123750751637x3z + 556061188891864603x2y2

+31160528287760988x2yz + 77585184908680638x2z2

+982040544271606073xy3 + 860780141350083361xy2z

+853202732103761301xyz2 + 953674572673705028xz3

+1020431679265907920y4 + 609659296596817935y3z

+954717973652630225y2z2 + 717468332466366860yz3

+1023160869085822939z4 = 0

Computing C/k takes 0.500 second.
5.2.2. Transferring the DLP. We first find the isomorphism from E to Eλ,

ξ : E → Eλ as follows.

ξ : E → Eλ

(x : y : z) �→ (xEλ
: yEλ

: zEλ
)

xEλ
= (508394311291495279ε2 + 644802231052062119ε

+115125795437003532)x,

yEλ
= (177549366635458744ε2 + 533904715816049699ε

+115337281084752855)y,

zEλ
= (508394311291495279ε2 + 644802231052062119ε

+115125795437003532)z

Its inverse map ξ−1 is

ξ−1 : Eλ → E

(x : y : z) �→ (xE : yE : zE)

xE = (953930729849692988ε2 + 810853815288336082ε

+251110930387145558)x,

yE = (1138672552244146500ε2 + 82385099258240519ε

+13496951135910011)y,

zE = (953930729849692988ε2 + 810853815288336082ε

+251110930387145558)z
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Next we compute the isomorphism from Eλ to C0, τ : Eλ → C0 as follows.

τ : Eλ → C0

(x : y : z) �→ (xC0
: yC0

: zC0
)

xC0
= (510834712742882221ε2 + 459409699423611549ε

+472370343629151306)x2z + (23471605822501754ε2

+309377569878570651ε+ 7799912042878324)xyz

+(931076450504798462ε2 + 525743454321773525ε

+30041499258217822)xz2 + (977818514557529265ε2

+765506242357294185ε+ 252827041845239982)yz2

+(1000370112565854753ε2 + 328209714163922360ε

+293352898935549091)z3,

yC0
= (1102768582695395466ε2 + 801656811370788382ε

+1017012503317150212)x3 + (162397320242107152ε2

+559604911348892417ε+ 312861297828079035)x2z

+(558782202587610802ε2 + 590994009401290871ε

+1152361677914957201)xz2 + (11735802911250877ε2

+731149537242710761ε+ 3899956021439162)y2z

+(764240535732840601ε2 + 875626294947314353ε

+1076372293311177227)yz2 + (48504428759686342ε2

+341476326696745685ε+ 96595209872171953)z3,

zC0
= (1105978292961847363ε2 + 534166364849709569ε

+1137321680521094223)x2z + (700411960197286424ε2

+396739544391375873ε+ 141613337225890943)xz2

+(1019981124724128614ε2 + 858207083874918419ε

+885871207426547152)z3
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The inverse map τ−1 is

τ−1 : C0 → Eλ

(x : y : z) �→ (xEλ
: yEλ

: zEλ
)

xEλ
= (118031724417309434ε2 + 350724518050046294ε

+1076063691653845190)x2z + (670405242279340424ε2

+845948962475385428ε+ 764269400807635885)xz2

+(118031724417309434ε2 + 350724518050046294ε

+1076063691653845190)yz2 + (33504438785859910ε2

+683030287832610661ε+ 617705016327370265)z3,

yEλ
= (916858055772232003ε2 + 451472468506758283ε

+153715625906011362)x3 + (294627282375680470ε2

+920917626394396329ε+ 13034806790794087)x2z

+(916858055772232003ε2 + 451472468506758283ε

+153715625906011362)xyz + (410075187838725568ε2

+280227746762147164ε+ 841519322959781078)xz2

+(482516262327510447ε2 + 306972542131465443ε

+388652103799214986)yz2 + (574942304842369359ε2

+1073906081772340197ε+ 240967744611792259)z3,

zEλ
= (979613630890391737ε2 + 873389934362453645ε

+48321338448744427)z3

For example, a base point on E is chosen as

E � PE = (832338441672439527ε2 + 369146262528272140ε

+788595051686438200 : 916492546448194121ε2

+805387000881236587ε+ 244343815529721159 : 1)

PE has a prime order :

ord(PE) = 383123885216476097596869443538990953306902164540505859.

This base point is mapped by ξ, τ to a point on C0.
First, PE is mapped to Eλ � PEλ

= ξ(PE) as follows.

PEλ
= (832338441672439527ε2 + 369146262528272140ε

+788595051686438200 : 418553404991940047ε2

+588606626377609234ε+ 1115855807315016888 : 1)

Next, it is mapped to P = τ (PEλ
) ∈ C0

P = (1003935588241243168ε2 + 895066217057986955ε

+382773722993550439 : 678187206200284353ε2

+191639213584321008ε+ 673955618306920562 : 1)

Now we find DP and χ(P ) as follows.

DP = Q1 +Q2
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q1 = 1117937506258149424ε2 + 644917233207069268ε+ 165251471146963260

q2 = 403047038883440000ε2 + 653044510390728782ε+ 817374729039765305

q3 = 994819008370064408ε2 + 979271450995116569ε+ 737452330843672573

q4 = 154176739126340404ε2 + 1152026966659272902ε+ 1072497119895785670

Q1 = (q1 : q2 : 1) ∈ C/k3, Q2 = (q3 : q4 : 1) ∈ C/k3

χ(P ) = DP + σDP + σ2

DP

σDP = σQ1 +
σQ2,

σ2

DP = σ2

Q1 +
σ2

Q2

σQ1 = (q1
q : q2

q : 1), σQ2 = (q3
q : q4

q : 1)

σ2

Q1 = (q1
q2 : q2

q2 : 1), σ2

Q2 = (q3
q2 : q4

q2 : 1)

Computing χ(P ) from PE takes 21.062 seconds.
Now take m = 182096100370109847529739170552459116709626522690507709,
mPE ∈ E is

mPE = (522521730599820536ε2 + 443211485181667680ε

+408033332463290588 : 191091537075096495ε2

+622369471011935091ε+ 865873192897372210 : 1)

mPE is also mapped first to Eλ � mPEλ
= ξ(mPE),

mPEλ
= (522521730599820536ε2

+443211485181667680ε+ 408033332463290588

: 872463812381179496ε2 + 234010666736627778ε

+346552211766968750 : 1)

and then to mP = τ (mPEλ
) ∈ C0:

mP = (457134269332727797ε2 + 1093275824725039274ε

+664447513560384851 : 955617022224051997ε2

+777335844438891994ε+ 420110831598890971 : 1)

From mP , one can find DmP and χ(mP ) as follows.

DmP = Q1 +Q2

q1 = 30078314732782878ε2 + 988992501393194153ε+ 673404688332712109

q2 = 1148714815680333640ε2 + 423917326839288390ε+ 503765461488992377

q3 = 734788579677917913ε2 + 68926008534553154ε+ 77740516941101348

q4 = 750968410676713515ε2 + 683426730428696431ε+ 823046869633863637

Q1 = (q1 : q2 : 1) ∈ C/k3, Q2 = (q3 : q4 : 1) ∈ C/k3

χ(mP ) = DmP + σDmP + σ2

DmP

σDmP = σQ1 +
σQ2,

σ2

DmP = σ2

Q1 +
σ2

Q2

σQ1 = (q1
q : q2

q : 1), σQ2 = (q3
q : q4

q : 1)

σ2

Q1 = (q1
q2 : q2

q2 : 1), σ2

Q2 = (q3
q2 : q4

q2 : 1)

Computing χ(mP ) from mPE takes 11.281 seconds.
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In fact, given {2iPE |0 ≤ i ≤ 999}, the average time to find χ(2iP ) is 23.155937
seconds.

6. Conclusion

We presented two algorithms to implement the GHS attack against elliptic
curve cryptosystems over cubic extension fields of odd characteristic and the results
of the computer simulation. The first algorithm obtains the defining equation for
the nonhyperelliptic covering C/k of the elliptic curve C0/k3. The second algorithm
transfers explicitly the DLP over C0/k to the DLP over Jac(C/k). These DLP over
Jac(C/k) can then be solved using Diem’s double-large-prime algorithm.
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Appendix: On Condition (2.14) of hyperellipticity

Type I. By (2.14), β = A · α =
aα+ b

cα+ d
(a, b, c, d ∈ k). Combining with

TrA = 0, one has the following variation of Condition (2.14)

C is hyperelliptic ⇐⇒ β = A · α, A ∈ GL2(k),TrA = 0(6.1)

⇐⇒ Either (i) or (ii) is true.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(i) A =

(
a b
0 −a

)
,

β = A · α = aα+b
−a = −α− b′,

or α+ β = −b′ ∈ k

(ii) A =

(
a b
1 −a

)
, β = A · α = aα+b

α−a

(6.2)

In particular, Condition (ii) means β =
aα+ b

α− a
, or

αβ − (α+ β)a− b = 0(6.3)

Since any element l ∈ k3 can be expressed, using the basis {1, ε, ε2} as

l = l0 + l1ε+ l2ε
2 l0, l1, l2 ∈ k

assume

α = α0 + α1ε+ α2ε
2,(6.4)

β = β0 + β1ε+ β2ε
2(6.5)

Then

αβ = (αβ)0 + (αβ)1ε+ (αβ)2ε
2(6.6)

−(α+ β)a = −(α0 + β0)a− (α1 + β1)aε− (α2 + β2)aε
2(6.7)
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(6.3) becomes

αβ − (α+ β)a− b

= {(αβ)0 − (α0 + β0)a− b}+ {(αβ)1 − (α1 + β1)a}ε(6.8)

+{(αβ)2 − (α2 + β2)a}ε2

= 0(6.9)

Therefore Condition (ii) can be replaced by the existence of solutions in the follow-
ing linear equations in a, b⎧⎨

⎩
−(α0 + β0)a− b+ (αβ)0 = 0
−(α1 + β1)a+ (αβ)1 = 0
−(α2 + β2)a+ (αβ)2 = 0

(6.10)

When one wishes to find a nonhyperelliptic curve, Condition (2.14) has to be
avoided. Therefore neither (i) nor (ii) should hold for α and β. This means

(i) α+ β /∈ k(6.11)

(ii) The system of equations:

⎧⎨
⎩

−(α0 + β0)a− b+ (αβ)0 = 0
−(α1 + β1)a+ (αβ)1 = 0
−(α2 + β2)a+ (αβ)2 = 0

(6.12)

has no solution.

Define

(6.13) B :=

⎛
⎝ −(α0 + β0) −1

−(α1 + β1) 0
−(α2 + β2) 0

⎞
⎠ , B′ :=

⎛
⎝ −(α0 + β0) −1 −(αβ)0

−(α1 + β1) 0 −(αβ)1
−(α2 + β2) 0 −(αβ)2

⎞
⎠

then (ii) holds if and only if rank B �= rank B′.

In other words, to obtain a nonhyperelliptic covering curve C/k, one only needs
to choose α and β such that α+ β /∈ k and rank B �= rank B′.

Type II. For the Type II case, since α+ β = Trk6/k3
(α), αβ = Nk6/k3

(α), (i)

and (ii) in Type I can be replaced by

(i) Trk6/k3
(α) /∈ k

(ii) The system of equations:

⎧⎨
⎩

−{Trk6/k3
(α)}0a− b+ {Nk6/k3

(α)}0 = 0
−{Trk6/k3

(α)}1a+ {Nk6/k3
(α)}1 = 0

−{Trk6/k3
(α)}2a+ {Nk6/k3

(α)}2 = 0
has no solution.

Define
(6.14)

B :=

⎛
⎝ −{Trk6/k3

(α)}0 −1
−{Trk6/k3

(α)}1 0
−{Trk6/k3

(α)}2 0

⎞
⎠ , B′ :=

⎛
⎝ −{Trk6/k3

(α)}0 −1 −{Nk6/k3
(α)}0

−{Trk6/k3
(α)}1 0 −{Nk6/k3

(α)}1
−{Trk6/k3

(α)}2 0 −{Nk6/k3
(α)}2

⎞
⎠

then (ii) holds if and only if rank B �= rank B′.
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Thus, to obtain a nonhyperelliptic covering for a Type II curve, one needs to
choose α and β such that Trk6/k3

(α) /∈ k and rank B �= rank B′.
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