Topological Complexity and Related Topics

Mini-Workshop
Topological Complexity and Related Topics
February 28–March 5, 2016
Mathematisches Forschungsinstitut Oberwolfach,
Oberwolfach, Germany

Mark Grant
Gregory Lupton
Lucile Vandembroucq
Editors
Contents

Preface v

Survey Articles
Equivariant topological complexities
 Andrés Ángel and Hellen Colman 1
Rational methods applied to sectional category and topological complexity
 José Carrasquel 17
Topological complexity of classical configuration spaces and related objects
 Daniel C. Cohen 41
A topologist’s view of kinematic maps and manipulation complexity
 Petar Pavešić 61

Research Articles
On the cohomology classes of planar polygon spaces
 Donald M. Davis 85
Sectional category of a class of maps
 Jean-Paul Doeraene, Mohammed El Haouari, and Carlos Ribeiro 91
Q-topological complexity
 Lucía Fernández Suárez and Lucile Vandembroucq 103
Topological complexity of graphic arrangements
 Nathan Fieldsteel 121
Hopf invariants, topological complexity, and LS-category of the cofiber of the diagonal map for two-cell complexes
 Jesús González, Mark Grant, and Lucile Vandembroucq 133
Topological complexity of collision-free multi-tasking motion planning on orientable surfaces
 Jesús González and Bárbara Gutiérrez 151
Topological complexity of subgroups of Artin’s braid groups
 Mark Grant and David Recio-Mitter 165
Preface

This is the proceedings volume of a conference on Topological Complexity and Related Topics, held at the Mathematisches Forschungsinstitut Oberwolfach (MFO) from February 28 to March 5, 2016, under the auspices of their Mini-Workshop program. There were 16 participants. The talks were a mixture of presentations of research results and surveys, as reflected in the contents of this volume. Details about the conference, including a list of participants as well as short abstracts of the talks presented, are available from the corresponding Oberwolfach Report [Report No. 15/2016, Mini-Workshop: Topological Complexity and Related Topics, Oberwolfach Reports, Vol. 13, No. 1 (2016), pp. 705–740].

The notion of topological complexity (TC) was introduced by Farber in 2003. This is a numerical homotopy invariant of a space, of Lusternik–Schnirelmann type, which provides a topological approach to the study of the complexity of the motion planning problem in robotics. If X is the configuration space of a mechanical system, that is, the space of all the possible states of the system, then a motion planner in X is a (not necessarily continuous) function that assigns to each pair $(x, y) \in X \times X$ a path in X from x to y prescribing the motion of the system from the initial state x to the final state y. The point of departure for this notion as a topic of interest is a basic result that says a global continuous motion planner is possible only when the configuration space X is contractible. Roughly speaking, then, $TC(X)$ corresponds to the minimum number of local continuous motion planners needed to determine a complete motion planner in X. It soon becomes apparent that $TC(X)$ is determined by the topology of the space X in ways that are often not well-understood, making it a delicate invariant to compute. By specifying some intermediate states in the motion, the concept was generalized to the notion of higher topological complexity by Rudyak in 2010.

These invariants have been intensively studied in the last decade, and their values have been determined for numerous interesting spaces. Much work has been done in particular on the case of classical configuration spaces, whose points consist of ordered n-tuples of distinct points in a given space, and which model the collision-free motion planning problem with n agents. Some of these spaces are Eilenberg-Mac Lane spaces $K(G, 1)$. It remains a challenge to understand the topological complexity of such spaces in terms of the properties of the group G. The survey of Cohen presents the methods of determination of the topological complexity of the configuration spaces of various classical spaces (such as Euclidean spaces and compact orientable surfaces). The discussion is also extended to some related spaces such as orbits of configuration spaces and some Eilenberg-Mac Lane spaces $K(G, 1)$. In the same direction, the article of González and Gutiérrez determines the higher topological complexity of the configuration spaces of ordered distinct
points in an orientable surface. The article of Grant and Recio-Mitter studies the
(higher) topological complexity of Eilenberg-Mac Lane spaces $K(G, 1)$ where G is a
certain type of subgroup of Artin’s full braid group, while the article by Fieldsteel is
dedicated to the (higher) topological complexity of the complement in \mathbb{C}^n of some
arrangements of hyperplanes associated to a graph. In most of these works, an
important tool is the cohomological lower bound of TC given by the zero-divisors
cup-length. As a potential useful step towards the computation of this cohomologi-
cal lower bound, the article of Davis analyses the top cohomology class of the space
of isometry classes of polygons whose side lengths satisfy some condition.

As mentioned above, TC is related to the Lusternik–Schnirelmann category
(LS-category, or cat), the theory of which progressed rapidly in the last decade of
the twentieth century. Many tools and techniques of rational homotopy theory and
of classical homotopy theory have been developed in order to study the properties
of this invariant, and to solve outstanding problems such as the Ganea conjecture
on $\text{cat}(X \times S^p)$. Topological complexity (and its higher versions) and LS-category
are special cases of the Schwarz genus, or sectional category, of a fibration. Several
studies have been dedicated to this unifying notion in the recent past, with efforts
being made to generalize the ideas, techniques, and approximations developed in
the context of LS-category to sectional category, in order to make them available
for the study of TC. The survey of Carrasquel presents the algebraic tools and
results which have been developed in rational homotopy theory to study approxi-
mations of sectional category and TC using Sullivan models. In a more topological
approach, the article by Doeraene, El Haouari and Ribeiro develops a notion of
sectional category of a class of maps which generalizes the classical notion of sec-
tional category, while the article of Fernández-Suárez and Vandembroucq studies a
notion of Q-topological complexity inspired by the notion of Q-category introduced
by Scheerer, Stanley and Tanré. In the last decade, some work has also been done
to understand the (close) relationship between TC(X) and the LS-category of the
cofibre of the diagonal map $\Delta : X \to X \times X$. The article by González, Grant and
Vandembroucq pursues this investigation in the special case of two-cell complexes,
making use of the Berstein-Hilton-Hopf invariants, which played an important role
in Iwase’s resolution of the Ganea conjecture for LS-category.

Since the introduction of TC, many extensions and variations of the concept
have been conceived that take into account some additional aspects of the mo-
tion planning problem. For instance, various authors have developed versions of
equivariant TC in order to study the complexity of the motion planning problem
when the configuration space is given with the action of a group. The survey of
Ángel and Colman reviews these different approaches, and discusses the properties
and advantages of each invariant. In another direction, the notion of topological
complexity of a map has recently been introduced, in order to take into account
the information encoded by the so-called kinematic map associated to a mechan-
ical system. The survey of Pavešić reviews various aspects of robotics which are
relevant in the study of the motion planning problem, discussing in particular the
properties of kinematic maps and the study of this new extension of topological
complexity.

Finally, we note that the articles of Ángel–Colman, Cohen, Davis and Pavešić
use Farber’s original definition of topological complexity for which the topological
complexity of a contractible space is 1, whereas the other articles have adopted
the normalized version which assigns 0 to a contractible space (as is usual in more homotopical approaches to invariants of Lusternik–Schnirelmann type).

The AMS publications department has been very encouraging and supportive throughout the preparation of this volume. We would like to thank Christine Thivierge, especially, for her guidance at each stage. The editors, who were also the conference organisers, thank the MFO for support with overall organization of the conference, and for providing an ideal location with outstanding facilities for our activity. This activity was partially supported by a grant from the Simons Foundation (#209575 to Gregory Lupton), and by funds from the (Portuguese) Fundação para a Ciência e a Tecnologia, through the Project UID/MAT/0013/2013. The MFO and the editors thank the National Science Foundation for supporting the participation of junior researchers in the workshop under the grant DMS-1049268, “US Junior Oberwolfach Fellows.”

Mark Grant
Gregory Lupton
Lucile Vandembroucq
This volume contains the proceedings of the mini-workshop on Topological Complexity and Related Topics, held from February 28–March 5, 2016, at the Mathematisches Forschungsinstitut Oberwolfach.

Topological complexity is a numerical homotopy invariant, defined by Farber in the early twenty-first century as part of a topological approach to the motion planning problem in robotics. It continues to be the subject of intensive research by homotopy theorists, partly due to its potential applicability, and partly due to its close relationship to more classical invariants, such as the Lusternik–Schnirelmann category and the Schwarz genus.

This volume contains survey articles and original research papers on topological complexity and its many generalizations and variants, to give a snapshot of contemporary research on this exciting topic at the interface of pure mathematics and engineering.