Unimodularity in Randomly Generated Graphs

AMS Special Session
Unimodularity in Randomly Generated Graphs
October 8–9, 2016
Denver, Colorado

Florian Sobieczky
Editor
Unimodularity in Randomly Generated Graphs
Unimodularity in Randomly Generated Graphs

AMS Special Session
Unimodularity in Randomly Generated Graphs
October 8–9, 2016
Denver, Colorado

Florian Sobieczky
Editor
Dedicated to Prof. Russell Lyons in admiration of his work and gratitude for his inspiration.
Contents

Preface ... 9

Monotonicity of average return probabilities for random walks in random environments
 Russell Lyons .. 11

Counterexamples for percolation on unimodular random graphs
 Omer Angel and **Tom Hutchcroft** 21

Invariant ρ-percolation on regular trees
 Itai Benjamini and **Ori Gurel-Gurevich** 33

Sparse graph limits along balls
 Itai Benjamini and **Gabor Elek** 53

Percolation and coarse conformal uniformization
 Itai Benjamini .. 63

Invariant tilings and unimodular decorations of Cayley graphs
 Ádám Timár ... 83

Distributional lattices on Riemannian symmetric spaces
 Elliot Paquette .. 91

Eternal Family Trees and dynamics on unimodular random graphs
 Francois Baccelli, **Mir-Omid Haji-Mirsadeghi**,
 and **Ali Khezeli** .. 115

Circular slider graphs: de Bruijn, Kautz, Rauzy, lamplighters and spiders
 Vadim A. Kaimanovich 129

All properly ergodic Markov chains over a free group are orbit equivalent
 Lewis Bowen .. 155

Shift-coupling of random rooted graphs and networks
 Ali Khezeli ... 175
Preface

‘Well, this soup is inedible, again.’
‘Why? This is even a very fine soup, today!’
‘Nobody claims this isn’t a fine soup.
Just that it is too hot to be edible.’
Karl Valentin, ‘Der Hasenbraten’

The special session ‘Unimodularity in randomly generated graphs’ was held at the Denver AMS sectional meeting in October 2016. At this time of the year the Indian Summer turns the Aspen trees of the Rocky Mountain Front Range into a golden curtain. It brought together people from different communities turning the discussion into a fruitful event.

Russ Lyons and Yuval Peres with the Rocky Mountains in the background

Unimodularity is a term originally used in the field of topological groups, where it refers to the equality of the left and right Haar measure. ‘Unimodularity of graphs’ was invented as a concept in percolation theory under the name of the ‘Mass Transport Principle’ where it was used with great success to generalise results from percolation on the Euclidean lattice to vertex-transitive graphs. It is equivalent to unimodularity of the automorphism group of the graph but has been developed further in terms of measures of rooted random graph valued processes. More generally, for measurable spaces of equivalence relations allowing graphings, unimodularity plays a central role in terms of the invariance and reversibility with respect to these equivalence relations. This is only a very incomplete glimpse of the range of topics in which unimodularity is the main underlying concept. Numerous related terms (such as hyperfiniteness, quasi-invariance, Diestel-Leader graphs and horocyclic products) are currently being developed further, and several of these developments are discussed in the articles of this volume. If different communities value different aspects of the same notion, let us remember the great Karl Valentin,
and try to understand the other specialist’s view.

This special session and the publication of these proceedings have been supported by the Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry of Science, Research and Economy, and the Province of Upper Austria in the frame of the COMET center SCCH.

Hagenberg, Florian Sobieczky, August 2018
Selected Published Titles in This Series

719 Florian Sobieczky, Editor, Unimodularity in Randomly Generated Graphs, 2018
716 Alex Martinskovsky, Kiyoshi Igusa, and Gordana Todorov, Editors, Surveys in Representation Theory of Algebras, 2018
715 Sergio R. López-Permouth, Jae Keol Park, S. Tariq Rizvi, and Cosmin S. Roman, Editors, Advances in Rings and Modules, 2018
714 Jens Gerlach Christensen, Susanna Dann, and Matthew Dawson, Editors, Representation Theory and Harmonic Analysis on Symmetric Spaces, 2018
713 Naihuan Jing and Kailash C. Misra, Editors, Representations of Lie Algebras, Quantum Groups and Related Topics, 2018
712 Nero Budur, Tommaso de Fernex, Roi Docampo, and Kevin Tucker, Editors, Local and Global Methods in Algebraic Geometry, 2018
711 Thomas Creutzig and Andrew R. Linshaw, Editors, Vertex Algebras and Geometry, 2018
710 Raphaël Danchin, Reinhard Farwig, Jiří Neustupa, and Patrick Penel, Editors, Mathematical Analysis in Fluid Mechanics, 2018
709 Fernando Galaz-García, Juan Carlos Pardo Millán, and Pedro Solórzano, Editors, Contributions of Mexican Mathematicians Abroad in Pure and Applied Mathematics, 2018
708 Christian Ausoni, Kathryn Hess, Brenda Johnson, Ieke Moerdijk, and Jérôme Scherer, Editors, An Alpine Bouquet of Algebraic Topology, 2018
707 Nitya Kitchloo, Mona Merling, Jack Morava, Emily Riehl, and W. Stephen Wilson, Editors, New Directions in Homotopy Theory, 2018
706 Yeonhyang Kim, Sivaram K. Narayan, Gabriel Piciuoroaga, and Eric S. Weber, Editors, Frames and Harmonic Analysis, 2018
705 Graham J. Leuschke, Frauke Bleher, Ralf Schiffler, and Dan Zacharia, Editors, Representations of Algebras, 2018
704 Alain Escassut, Cristina Perez-Garcia, and Khodr Shamseddine, Editors, Advances in Ultrametric Analysis, 2018
703 Andreas Malmendier and Tony Shaska, Editors, Higher Genus Curves in Mathematical Physics and Arithmetic Geometry, 2018
702 Mark Grant, Gregory Lupton, and Lucile Vandembroucq, Editors, Topological Complexity and Related Topics, 2018
701 Joan-Carles Lario and V. Kumar Murty, Editors, Number Theory Related to Modular Curves, 2018
700 Alexandre Girouard, Dmitry Jakobson, Michael Levitin, Nilima Nigam, Iosif Polterovich, and Frédéric Rochon, Editors, Geometric and Computational Spectral Theory, 2017
699 Mark L. Agranovsky, Matania Ben-Artzi, Catherine Bénéteau, Lavi Karp, Dmitry Khavinson, Simeon Reich, David Shoikhet, Gilbert Weinstein, and Lawrence Zalcman, Editors, Complex Analysis and Dynamical Systems VII, 2017
698 Alexander M. Blokh, Leonid A. Bunimovich, Paul H. Jung, Lex G. Oversteegen, and Yakov G. Sinai, Editors, Dynamical Systems, Ergodic Theory, and Probability: in Memory of Kolya Chernov, 2017
697 Fabrizio Broglio, Françoise Delon, Max Dickmann, Danielle Gondard-Cozette, and Victoria Ann Powers, Editors, Ordered Algebraic Structures and Related Topics, 2017
696 Ara S. Basmajian, Yair N. Minsky, and Alan W. Reid, Editors, In the Tradition of Ahlfors–Bers, VII, 2017

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/conmseries/.
This volume contains the proceedings of the AMS Special Session on Unimodularity in Randomly Generated Graphs, held from October 8–9, 2016, in Denver, Colorado.

Unimodularity, a term initially used in locally compact topological groups, is one of the main examples in which the generalization from groups to graphs is successful. The “randomly generated graphs”, which include percolation graphs, random Erdős–Rényi graphs, and graphings of equivalence relations, are much easier to describe if they result as random objects in the context of unimodularity, with respect to either a vertex-transient “host”-graph or a probability measure.

This volume tries to give an impression of the various fields in which the notion currently finds strong development and application: percolation theory, point processes, ergodic theory, and dynamical systems.