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Preface

This work is based on the notes of an elementary course on Abelian Varieties given
at Concordia University from January to May 1986. In the last few years, the
notes have been distributed informally to students wishing to have an introduction
to the subject. The positive response from them and from colleagues has been an
encouragement to make them available on a wider basis.

Throughout, we have tried to preserve the informal style of the lectures. The
aim has been to present the material in a form suitable for independent study by
graduate students and by researchers in other fields who may wish an introduction
to the subject.

I would like to thank Clifton Cunningham and Damien Roy for a careful reading
of the manuscript and for offering many helpful suggestions and comments. I would
also like to thank Abid Zaidi for typing the notes and Emile LeBlanc for help with
IATEX and other computer related problems. Finally, I thank Francis Clarke for
the invitation to publish in the CRM Monograph Series, and the editorial staff of
CRM for their helpfulness and efficiency.

Vijaya Kumar

Toronto
September 1992
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The book represents an introduction to the theory of abelian varieties with a view to arith-
metic. The aim is to introduce some of the basics of the theory as well as some recent
arithmetic applications to graduate students and researchers in other fields. The first part
contains proofs of the Abel-Jacobi theorem, Riemann’s relations and the Lefschetz theorem
on projective embeddings over the complex numbers in the spirit of S. Lang’s book
Introduction to algebraic and abelian functions. Then the Jacobians of Fermat curves as well as
some modular curves are discussed. Finally, as an application, Faltings’ proof of the Mordell
conjecture and its intermediate steps, the Tate conjecture and the Shafarevich conjecture, are
sketched.
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