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APPENDIX A

Proofs of (5.7), (5.12), and (5.19)

Proof of (5.7). The asymptotic form of the associated Laguerre polynomial

is given by (5.6). For convenience, we call the amplitude part A(θ,m) and the

argument part fm(θ) + α. Thus (5.6) can be rewritten as

(A.1) φ(2)
m (x) ≡ (h(a)

m )−1/2
(
wa(x)

)1/2
L(a)
m (x) = A(θ,m) sin[fm(θm) + α],

where

A(θ,m) =
(−1)m√

2π sin θm cos θm
,

fm(θm) =

(
m+

a+ 1

2

)
(sin 2θm − 2θm),

α =
3π

4
,

where x = (4m+ 2a+ 2) cos2 θ. Here, x does not depend on m but θ does. Hence

differentiating with respect to θ and putting ∆m = ±1, we have

(A.2) ∆θm = ±1

2

[(
m+

a+ 1

2

)
tan θm

]−1

 ± 1

2m tan θm

We also get

(A.3)

(
∂fm(θm)

∂m

)
= (sin 2θm − 2θm)

and

(A.4)

(
∂fm(θm)

∂θm

)
= −4

(
m+

a+ 1

2

)
sin2 θm.

Using (A.1) – (A.4), we can write

(A.5) φ
(2)
m±1(x) = A(θm,m) sin[fm±1(θm±1) + α]

= A(θm,m) sin

[
fm(θm)± ∂fm(θm)

∂m
∆m± ∂fm(θm)

∂θm
∆θm + α

]
= A(θm,m) sin

[(
m+

a+ 1

2

)
(sin 2θm − 2θm)

± (sin 2θm − 2θm)∓ sin 2θm +
3π

4

]
.

Thus we have

(A.6) φ
(2)
m±1(x)

=
(−1)m√

2π sin θm cos θm
sin

[(
m+

a+ 1

2

)
(sin 2θm − 2θm)∓ 2θm +

3π

4

]
. �
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116 A. PROOFS OF (5.7), (5.12), AND (5.19)

Proof of (5.12). The asymptotic form of the Hermite polynomial is given by

(5.11). For convenience, we call the amplitude part A(θ,m) and the argument part

fm(θ) + α. Thus (5.11) can be rewritten as

(A.7) φ(2)
m (x) ≡ (h(a)

m )−1/2
(
wG(x)

)1/2
Hm(x) = A(θ,m) sin[fm(θm) + α],

where

A(θ,m) =
1√

π sin θ

(
2

m

)1/4

,

fm(θm) =

(
m

2
+

1

4

)
(sin 2θm − 2θm),

α =
3π

4

where x =
√
(2m+ 1) cos θ. Here, x does not depend on m but θ does. Hence

differentiating with respect to θ and putting ∆m = ±1, we have

(A.8) ∆θm = ± 1

(2m+ 1) tan θm
 ± 1

2m tan θm
.

We also get

(A.9)

(
∂fm(θm)

∂m

)
=

1

2
(sin 2θm − 2θm)

and

(A.10)

(
∂fm(θm)

∂θm

)
= −4

(
m

2
+

1

4

)
sin2 θm.

Using (A.7) – (A.10), we can write

(A.11) φ
(2)
m±1(x) = A(θm,m) sin[fm±1(θm±1) + α]

= A(θm,m) sin

[
fm(θm)± ∂fm(θm)

∂m
∆m± ∂fm(θm)

∂θm
∆θm + α

]
= A(θm,m) sin

[(
m

2
+

1

4

)
(sin 2θm − 2θm)

± 1

2
(sin 2θm − 2θm)∓ sin 2θm

2
+

3π

4

]
.

Thus we have

(A.12) φ
(2)
m±1(x)

=
1√

π sin θm

(
2

m

)1/4

sin

[(
j

2
+

1

4

)
(sin 2θm − 2θm)∓ θm +

3π

4

]
. �

Proof of (5.19). The asymptotic form of orthogonal functions corresponding

to the quartic weight is given by (5.16). For convenience, we call the amplitude

part A(x, θm) and the argument part fm(θ).

(A.13) φ(2)
m (x) = A(x, θm)

[
cos
(
fm(θ)

)
+O(N−1)

]
,

where

fm(θ) =

(
m+ 1

2

2

)(
sin(2θ)

2
− θ

)
− (−1)m

χ

4
+

π

4
.



A. PROOFS OF (5.7), (5.12), AND (5.19) 117

We know that

(A.14) 2
√
λ′g cos θ = gx2 + t, λ′ =

m+ 1
2

N
, λ ≡ m

N
,

where, for a given x, θ varies with λ. Hence differentiating with respect to θ and

putting N∆λ′ = ±1, we have

(A.15) ∆θm = ± 1

2λ′ tan θm
.

We also get

(A.16)

(
∂fm(θm)

∂λ′

)
=

N

2

(
sin 2θm

2
− θm

)
and

(A.17)

(
∂fm(θm)

∂θm

)
= −Nλ′ sin2 θm.

Using (A.15) – (A.17), we can write

(A.18) φ
(2)
m±1(x) = A(x, θm) cos[fm±1(θm±1)]

= A(x, θm) cos

[
fm(θm)± ∂fm(θm)

∂λ′ ∆λ′ ± ∂fm(θm)

∂θm
∆θm

]
= A(x, θm) cos

[
(m+ 1

2 )

2

(
sin(2θm)

2
− θm

)
± 1

2

(
sin(2θm)

2
− θm

)
∓ 1

4
sin 2θm − (−1)m

χ

4
+

π

4

]
.

Thus we have

(A.19) φ
(2)
m±1(x)

=
2Cm

√
x√

sin θm
cos

[
(m+ 1

2 )

2

(
sin 2θm

2
− θm

)
∓ θm

2
− (−1)m

χ

4
+

π

4

]
.

Here we note that for a given x, χ remains constant under the variation of θ
and m. �





APPENDIX B

Associated Laguerre and Gaussian Results as
Limiting Cases of Jacobi Skew-orthogonal

Polynomials

In this appendix we prove the Jacobi results (8.6) – (8.15) and the associated

Laguerre and Gaussian results for the skew-orthogonal polynomials given in Chap-

ters 6, 8 for β = 1, 4 respectively by taking the limit.

For associated Laguerre and Hermite weight functions one can directly follow

the above procedure, or more simply take the limits of the Jacobi results as discussed

below. For associated Laguerre, note first that

wa(x) = lim
b→∞

2−a−bbawab(1− 2b−1x),(B.1)

L
(a)
j (x) = lim

b→∞
P a,b
j (1− 2b−1x),(B.2)

k
(a)
j = lim

b→∞

(
−2

b

)j

ka,bj ,(B.3)

h
(a)
j = lim

b→∞
ba+1

2a+b+1
ha,b
j .(B.4)

Thus for skew-orthogonal functions we have (in terms of the Jacobi skew-orthogonal

functions φa,b
j , ψa,b

j ),

φ
(1)
j (x) = lim

b→∞
(−1)j2−b+1/2baφa,b

j (1− 2b−1x),(B.5)

ψ
(1)
j (x) = lim

b→∞
(−1)j−12−b−1/2ba+1ψa,b

j (1− 2b−1x),(B.6)

giving thereby (4.40) – (4.50). Similarly, for the Hermite weight, note that (with

j = 2m, 2m+ 1)

e−x2/2 = lim
a→∞wa,a

(
x√
2a

)
,(B.7)

Hj(x) = lim
a→∞ 2jj!a−j/2P a,a

j

(
x√
a

)
,(B.8)

kj = lim
a→∞ 2jj!a−jka,aj ,(B.9)

hj = lim
a→∞(2jj!)2a−j+1/2ha,a

j ,(B.10)

φ
(1)
j (x) = lim

a→∞ 22m(2m)!(2a)−j/2φa,a
j

(
x√
2a

)
,(B.11)

ψ
(1)
j (x) = lim

a→∞ 22m(2m)!(2a)−(j−1)/2ψa,a
j

(
x√
2a

)
,(B.12)
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120 B. ASSOCIATED LAGUERRE AND GAUSSIAN RESULTS

giving the Hermite results (4.52) – (4.57).

For β = 4 with the Jacobi weight function, we expand π
(4)′
j (x) as

(B.13) π
(4)′
j (x) = P a,b

j−1(x) +

j−1∑
k=0

η
(j)
k π

(4)′
k (x),

so that (8.10) gives

(B.14)

π
(4)
j (x) =

2

j + a+ b− 1

[
DjP

a,b
j (x) + EjP

a,b
j−1(x) + FjP

a,b
j−2(x)

]
+

j−1∑
k=0

η
(j)
k π

(4)
k (x).

Then the orthogonality of the P a,b
j (x) and the skew-orthogonality of the π

(4)
j (x)

give

(B.15) η
(2m)
k = 0,

for k 
= 2m− 2, and

(B.16) η
(2m+1)
k = 0

for k 
= 2m. Also η
(2m+1)
2m , being arbitrary, is chosen to be zero. Thus η

(2m)
2m−2 ≡ η2m

is the only nonzero coefficient, giving thereby (8.6) – (8.9). The skew-orthogonality

of π
(4)
2m(x) and π

(4)
2m−1(x) gives

(B.17) η2m =
1

g2m−2

[
2D2m−1

2m+ a+ b− 2
ha,b
2m−1 −

2F2m

2m+ a+ b− 1
ha,b
2m−2

]
,

while the normalization is given by

(B.18) g
(4)
2m =

[
2D2m

2m+ a+ b− 1
ha,b
2m − 2F2m+1

2m+ a+ b
ha,b
2m−1

]
,

confirming thereby (8.14), (8.15). To prove the Jacobi result (8.10), we note that

the first step is given in a differential form in [77], while for the second step we

use [1]

(2j + a+ b)P a,b−1
j (x) = (j + a+ b)P a,b

j (x) + (j + a)P a,b
j−1(x),(B.19)

(2j + a+ b)P a−1,b
j (x) = (j + a+ b)P a,b

j (x)− (j + b)P a,b
j−1(x).(B.20)

This completes the proof of (8.6) – (8.15).

The associated Laguerre results (8.37) – (8.42) derive directly by using the limits

(B.1) – (B.4) in (8.6) – (8.15), while the Hermite results (8.64) – (8.67) derive from

the limits

e−2x2

= lim
a→∞wa,a(x

√
2/a),(B.21)

Hj(x
√
2) = lim

a→∞ 2jj!a−j/2P a,a
j (x

√
2/a).(B.22)



APPENDIX C

Proofs of (10.2) – (10.9)

In this appendix we outline a proof of the matrix-integral representations

(10.2) – (10.9) of the polynomials. The Vandermonde determinant and its fourth

power can be written as

∆(x1, . . . , xN ) = det[xN−ν
µ ]µ,ν=1,...,N ,(C.1)

(∆(x1, . . . , xN ))4 = det[x2N−ν
µ , (2N − ν)x2N−ν−1

µ ]µ=1,...,N,ν=1,...,2N .(C.2)

For β = 2, (10.2) represents orthogonal polynomials with the weight w(x) if

(C.3)

∫
xkPj(x)w(x) dx = 0, k = 0, 1, . . . , j − 1.

Using the joint-probability distribution (1.12) result, in the definition of average

(10.1) and using the determinant in (10.2), the integral in (C.3) is proportional to

(C.4)

∫
dx1 · · ·

∫
dxj+1 (xj+1)

k∆(x1, . . . , xj)∆(x1, . . . , xj+1)

j+1∏
µ=1

w(xµ)

=
1

(j + 1)!

∫
dx1 · · ·

∫
dxj+1

(∑
P

εP (xij+1
)k∆(xi1 , . . . , xij )

)

×∆(x1, . . . , xj+1)

j+1∏
µ=1

w(xµ),

where
∑

P is summation over all permutations (xi1 , . . . , xij+1
) of (x1, . . . , xj+1)

and εP (= ±1) is the sign of the permutation, equal to the change of sign in

∆(x1, . . . , xj+1) after the permutation. The summation term in (C.4) can be writ-

ten as

(C.5)
∑
P

εP (xij+1
)k∆(xi1 , . . . , xij ) = (−1)j det

⎛⎜⎜⎜⎝
xk
1 xk

2 . . . xk
j+1

xj−1
1 xj−1

2 . . . xj−1
j+1

...
...

. . .
...

1 1 . . . 1

⎞⎟⎟⎟⎠ ,

which is zero for k = 0, 1, . . . , j − 1, thereby proving (C.3) and hence (10.2).

For β = 1, we consider (10.3), (10.4) for the even-N case; a similar consideration

would apply to (10.5) – (10.7) for the odd-N case. The π
(1)
j (x) of (10.3), (10.4)

represent skew-orthogonal polynomials of the β = 1 type with the weight w(x) if

(C.6)

∫∫
dx dy ε(x− y)ykπ

(1)
j (x)w(x)w(y) = 0,

for k = 0, . . . , 2m− 1 and also for k = j for both j = 2m, 2m+ 1. The integrals in

(10.3), (10.4) involve |∆(x1, . . . , x2m)| and therefore Mehta’s method of integration
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122 C. PROOFS OF (10.2) – (10.9)

over alternate variables [53] can be used. For j = 2m, the integral in (C.6) is

proportional to

(C.7)

∫
dx1 · · ·dx2m+2 ε(x2m+1 − x2m+2)(x2m+2)

k

×
( 2m∏

ν=1

(x2m+1 − xν)

)
|∆(x1, . . . , x2m)|

2m+2∏
µ=1

w(xµ)

= (2m)!

∫
x1≤x2≤···≤x2m

dx1 · · ·
∫
dx2m+2 ε(x2m+1 − x2m+2)(x2m+2)

k

×
(2m+2∏

µ=1

w(xµ)

)
∆(x1, . . . , x2m+1)

=
1

2

(2m)!

m!

∫
dx1 dx3 · · · dx2m+1 det

⎛⎜⎜⎜⎝
0 0 . . . xk

2m+1 Fk(x2m+1)

x2m
1 F2m(x1) . . . x2m

2m F2m(x2m+1)
...

...
. . .

...
...

1 F0(x1) . . . 1 F0(x2m+1)

⎞⎟⎟⎟⎠
×

m∏
i=0

w(x2i+1)

=
1

2

(2m)!

m!(m+ 1)!

∫
dx1 dx3 · · · dx2m+1 det

⎛⎜⎜⎜⎜⎜⎝
xk
1 Fk(x1) . . .

x2m
1 F2m(x1) . . .

x2m−1
1 F2m−1(x1) . . .
...

...
...

1 F0(x1) . . .

⎞⎟⎟⎟⎟⎟⎠
×

m∏
i=0

w(x2i+1).

In the second and third steps the above-mentioned Mehta’s method of integration

over alternate variables is used, where Fk(x) is given by

(C.8) Fk(x) =

∫ ∞

x

ykw(y) dy.

In the last step of (C.7) all permutations of (x1, x3, . . . , x2m+1) have been used.

The determinant in the last step is zero for k = 0, . . . , 2m, thereby proving (C.6)

and (10.3). For j = 2m + 1, the first integral in (C.7) has, in the integrand, the

extra factor (x2m+1+
∑

xν) so that ∆(x1, . . . , x2m+1) in the second form is replaced

by

(C.9) det

⎛⎜⎜⎜⎝
x2m+1
1 . . . x2m+1

2m+1

x2m−1
1 . . . x2m−1

2m+1
... . . .

...

1 . . . 1

⎞⎟⎟⎟⎠ =

(2m+1∑
µ=1

xµ

)
∆(x1, . . . , x2m+1).

Then the second row in the determinant of the last step (C.7) is replaced by

x2m+1
1 , F2m+1(x1), . . . , other rows remaining the same. Again (C.6) for k = 0, . . . ,

2m− 1, 2m+ 1 and hence (10.4) are verified.



C. PROOFS OF (10.2) – (10.9) 123

For β = 4, (10.8) – (10.9) represent the skew-orthogonal polynomials if

(C.10)

∫
dx {xkπ

(4)′
j (x)− kxk−1π

(4)
j (x)}w(x) = 0,

for k = 0, . . . , 2m− 1 and also for k = j for j = 2m, 2m+ 1 both. In this case we

use (C.2) in the joint-probability density (1.12). For j = 2m, the integral in (C.10)

is proportional to

(C.11)

∫
dx1 · · ·dx2m dx2m+1{

xk
2m+1

d

dx2m+1

m∏
ν=1

(x2m+1 − xν)
2 − kxk−1

2m+1

m∏
ν=1

(x2m+1 − xν)
2

}

×
(2m+1∏

µ=1

w(xµ)

)(
∆(x1, . . . , xm)

)4

=

∫
dx1 · · · dx2m+1 det

⎛⎜⎜⎜⎝
0 0 . . . xk

2m+1 kxk−1
2m+1

x2m
1 2mx2m−1

1 . . . x2m
2m+1 2mx2m−1

2m+1
...

... . . .
...

...

1 0 . . . 1 0

⎞⎟⎟⎟⎠
2m+1∏
µ=1

w(xµ)

=
1

(m+ 1)!

∫
dx1 · · ·dx2m+1 det

⎛⎜⎜⎜⎝
xk
1 kxk−1

1 . . .
x2m
1 2mx2m−1

1 . . .
...

...
...

1 0 . . .

⎞⎟⎟⎟⎠
2m+1∏
µ=1

w(xµ),

where the last step is by a permutation of all the variables in the first step. The

determinant in the last step is again zero for k = 0, . . . , 2m, confirming (C.10) and

hence (10.8). For j = 2m+ 1, we have the additional term (x2m+1 + 2
∑

xν) with∏
(x − xν)

2. In this case the second rows of both the determinants of (C.11) are

replaced by (x2m+1
1 , (2m + 1)x2m

1 , . . . ), the last determinant being then zero for

k = 0, . . . , 2m− 1, and 2m+ 1. Thus (10.9) is verified.
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Orthogonal polynomials satisfy a three-term recursion relation irrespective of the weight 
function with respect to which they are defined. This gives a simple formula for the kernel 
function, known in the literature as the Christoffel–Darboux sum. The availability of asymp-
totic results of orthogonal polynomials and the simple structure of the Christoffel–Darboux 
sum make the study of unitary ensembles of random matrices relatively straightforward.

In this book, the author develops the theory of skew-orthogonal polynomials and obtains 
recursion relations which, unlike orthogonal polynomials, depend on weight functions. 
After deriving reduced expressions, called the generalized Christoffel–Darboux formulas 
(GCD), he obtains universal correlation functions and non-universal level densities for a 
wide class of random matrix ensembles using the GCD.

The author also shows that once questions about higher order effects are considered (ques-
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