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Preface

This monograph is an expanded version of the notes for a series of lectures
delivered at a workshop on Moduli Spaces and the Arithmetic of Dynamical Sys-
tems, Bellairs Research Institute, Barbados, May 2–9, 2010. As such, the level
of exposition is uneven, with some results being worked out in detail, while oth-
ers are merely sketched or have proofs by citation. The goal is to provide an
overview, with enough details and pointers to the existing literature, to give the
reader an entry into this exciting area of current research. It is the author’s hope
that this will be useful, especially since at present there are only a small num-
ber of books [4, 38, 61, 90, 99, 110] dealing with the arithmetic or algebraic side of
dynamical systems. For further reading, the reader might consult the webpage

http://www.math.brown.edu/~jhs/ADSHome.html
which contains links to an extensive list of articles in this area.
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Alon Levy for the content of Remark 4.19, Tom Scanlon for providing the proof
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sition 6.18, Michael Zieve for allowing me to include the algebraic characterization
of Lattès maps (Theorem 3.22), Curt McMullen for providing information about
transcendence in dynamics, and Xavier Buff, Laura DeMarco, and Adam Epstein
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Glossary

[Fn, Gn] nth iterate of [F,G], 57
[φ, ψ]AZ Arakelov–Zhang pairing, 72
[φ, ψ]KS Kawaguchi–Silverman pairing, 72
F � G notation for F � G and G � F , 101
g · x the image of the action of g on x, 12
〈φ〉 the point in Mn

d corresponding to φ ∈ Homn
d , 25

G � F notation for G(x) ≤ c1F (x) + c2, 101

AG the ring of invariant of G acting on A, 11
Ag the moduli space of principally polarized abelian varieties, 88
ā(φ) ideal class associated to minimal model of φ, 49
Aut(φ) the automorphism group of the map φ, 34

BiCritd set of maps with exactly two critical points, 42

C1(n) dynamical modular curve for maps ψb(z) = z/(z2 + b), 66

degX(S) minimal degree of polynomial vanishing on S, 98

eφ(P ) the ramification index of φ at P , 91
ev(φ) the valuation of the Macaulay resultant of φ, 47
εv(φ) exponent at v of the minimal resultant of φ, 48

Fg moduli space of K3 surfaces, 52
Fix map from Homd to the fixed points of the map, 36
Φφ,n n-dynatomic polynomial, 57
φf = f−1 ◦ φ ◦ f , the conjugate of φ by f , 4
φn nth iterate of the function φ, 3
φ#(P ) chordal derivative of φ at P , 108
φc(z) the polynomial z2 + c, 59

Gφ the subgroup of Gal(K/K) such that σ(φ) ∼ φ, 116
Gm the multiplicative group, 15
̂GΦ,v(P ) Green function for lift Φ of φ, 76
ĝφ,v Green function (local canonical height), 76

H1(G,A) cohomology set for G acting on A, 115
ĥcrit(φ) critical canonical height of the map φ, 99
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ĥ+
φ , ĥ

−
φ canonical heights for a regular affine automorphism, 83

ĥ+
φ , ĥ

−
φ canonical heights on a K3 surface, 86

h the Weil height on P
N (K), 69

h(φ) the height of the map φ via φ ∈ HomN
d ⊂ P

N , 70
(Homd)ss semistable locus in Homd, 21
(Homd)s stable locus in Homd, 21
Homd(P1(C)) degree d rational self-maps of P1(C), 3
Homn

d degree d morphisms P
n → P

n, 7
Homn

d (m) maps with a marked point of formal period n, 8

ι1, ι2 involutions on the surface SA,B, 51

J f(φ) the filled Julia set of φ, 76

Kφ the field of moduli for φ, 116

L(φ) the Lyapunov exponent of φ, 108
Ld the set of flexible Lattès maps in Md, 101
	(0) · x specialization of the 1-parameter subgroup 	, 17
Λn
φ the multiplier spectrum of φ, 25

λφ(α) multiplier of φ at the periodic point α, 24
Latd the set of flexible Lattès maps in Homd, 101

(Md)ss moduli space of semistable points in Homd, 21
(Md)s moduli space of stable points in Homd, 21
MK complete set of inequivalent normalized absolute values on K,

69
MK set of absolute values on the function field K = k(C), 45
Md moduli space of self-morphisms of P1, 8
Mn

d moduli space of self-morphisms of Pn, 8
Mn

d (m) moduli space of maps with a marked point of formal period n,
8

MBiCrit
d image of BiCritd in Md, 43

Mcrit
d moduli space of degree d maps with marked critical points, 92

Mcrit
d [i](r, n) subvariety of Mcrit

d with marked critical point having specified
portrait, 93

M the Mandelbrot set, 88
M2 completion of M2, 33
μ̂φ invariant measure associated to φ, 107
μ(φ) height expansion coefficient of φ, 81
μL(x, 	) integer invariant attached to 1-parameter subgroup 	, 18

Oφ(x) the forward orbit of x for the map φ, 3
Oφ,ψ(P ) full orbit of P for two maps φ and ψ, 80

Pcrit
d subvariety of Mcrit

d corresponding to polynomial maps, 96
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Pcrit
d [i](r, n) subvariety of Pcrit

d with point having given critical point orbit,
96

Per(φ,X) set of periodic points for φ, 4
Pern(φ,X) set of periodic points of period n for φ, 4
Per∗n(φ) periodic points of formal period n, 92
Per∗∗n (φ) points of exact period n, 8
PGLn+1 the projective linear group, 8
PrePer(φ,X) set of preperiodic points for φ, 4
PrePerm,n(φ,X) set of preperiodic points of tail m and period n, 4
PrePer∗r,n(φ) preperiodic points of tail length r and formal period n, 92

R(φ) the minimal resultant of φ, 48
Ratnd degree d rational maps P

n → P
n, 7

(Sφ)(z) the Schwarzian derivative of φ, 29
SA,B K3 surface determined by the coefficients A and B, 50
Sn symmetric group, 11
σ(g, x) the image of the action of g on x, 12
σi,n(φ) symmetric function of multipliers of φ, 25
Stab(f) the stabilizer of the map f , 12

TP (P1) tangent space of P1 at P , 25
TP (PN ) tangent space of PN at P , 27
TwistK(φ) the set of K-twists of φ, 113

V/G the quotient of V by the finite group G, 11

Xss(L) semistable locus, 16
Xs(L) stable locus, 16
X0(n) smooth projective model for Y0(n), 60
X1(n) smooth projective model for Y1(n), 59
Xs

(0)(L) stable locus with dimension 0 stabilizer, 16

Y0(n) dynamical modular curve, 60
Y1(n) dynamical modular curve, 59

Z(φ) locus of indeterminacy of φ, 40
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properties of, 70
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degree of a rational map, 40
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K-equivalence, 113
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homogeneity of, 48



INDEX 137

Mandelbrot set, 61
is connected, 88
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transforms, 1993

1 D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, 1992



CRMM/30

This monograph studies moduli problems associated to algebraic dynamical systems. It 
is an expanded version of the notes for a series of lectures delivered at a workshop on 
Moduli Spaces and the Arithmetic of Dynamical Systems at the Bellairs Research Institute, 
Barbados, in 2010.

The author’s goal is to provide an overview, with enough details and pointers to the existing 
literature, to give the reader an entry into this exciting area of current research. Topics 
covered include:

(1) Construction and properties of dynamical moduli spaces for self-maps of projective 
space.

(2) Dynatomic modular curves for the space of quadratic polynomials.

(3) The theory of canonical heights associated to dynamical systems.

(4) Special loci in dynamical moduli spaces, in particular the locus of post-critically fi nite 
maps.

(5) Field of moduli and fi elds of defi nition for dynamical systems.

For additional information
and updates on this book, visit

www.ams.org/bookpages/crmm-30

www.ams.org
AMS on the Web


