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Québec–Nature et technologies (FRQNT) and the Natural Sciences and Engineering Re-
search Council of Canada (NSERC).

2010 Mathematics Subject Classification. Primary 60B20; Secondary 82B23.

For additional information and updates on this book, visit
www.ams.org/bookpages/crmm-32

Library of Congress Cataloging-in-Publication Data

Bleher, Pavel, 1947– author.
Random matrices and the six-vertex model / Pavel Bleher, Karl Liechty.

pages cm. — (CRM monograph series / Centre de Recherches Mathematiques ; 32)
Includes bibliographical references.
ISBN 978-1-4704-0961-6 (alk. paper)
1. Random matrices. I. Liechty, Karl, 1981– author. II. Title.

QA188.B54 2013
519.2—dc23

2013032106

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by
e-mail to reprint-permission@ams.org.

c© 2014 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights
except those granted to the United States Government.

Printed in the United States of America.

©∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 19 18 17 16 15 14



Contents

Introduction vii

Chapter 1. Unitary Matrix Ensembles 1
1.1. Unitary ensemble with real analytic interaction 1
1.2. Ensemble of eigenvalues 3
1.3. Recurrence equations and discrete string equations for orthogonal

polynomials 9
1.4. Deformation equations for the recurrence coefficients 13
1.5. Differential equations and Lax pair for the ψ-functions 16

Chapter 2. The Riemann – Hilbert Problem for Orthogonal Polynomials 19
2.1. The Cauchy transform and its properties 19
2.2. The Riemann – Hilbert problem 20
2.3. Distribution of eigenvalues and equilibrium measure 22
2.4. The Deift – Zhou steepest descent method 27
2.5. Solution of the RHP for XN (z) 45
2.6. Asymptotics of the recurrence coefficients 47
2.7. Universality in the random matrix model 50

Chapter 3. Discrete Orthogonal Polynomials on an Infinite Lattice 55
3.1. The discrete log gas ensemble 55
3.2. Interpolation problem 56
3.3. Equilibrium measure 57
3.4. The g-function 61
3.5. Reduction of IP to RHP 62
3.6. First transformation of the RHP 65
3.7. Second transformation of the RHP 66
3.8. Model RHP 67
3.9. Parametrix at band-void edge points 68
3.10. Parametrix at the band-saturated region end points 70
3.11. The third and final transformation of the RHP 74
3.12. Asymptotics of recurrence coefficients 75
3.13. Universality in the discrete log gas ensemble 76

Chapter 4. Introduction to the Six-Vertex Model 81
4.1. Definition of the model 81
4.2. Height function and reduction of parameters 82
4.3. Mappings of the six-vertex model onto other ensembles 84
4.4. Exact solution of the six-vertex model for a finite n 88

v



vi CONTENTS

Chapter 5. The Izergin–Korepin Formula 93
5.1. The Yang – Baxter equation 96
5.2. A proof of Proposition 5.1.1 100
5.3. The recursion equation for Zn 101
5.4. The inhomogeneous model on the free fermion line 103
5.5. The homogeneous limit 105

Chapter 6. Disordered Phase 109
6.1. Main results 109
6.2. Rescaling of the weight 113
6.3. Equilibrium measure 114
6.4. Riemann – Hilbert analysis 128
6.5. Estimates on the jumps for Xn 133
6.6. Evaluation of X1 135
6.7. Proof of Proposition 6.1.2 139
6.8. The constant term 139

Chapter 7. Antiferroelectric Phase 143
7.1. Introduction 143
7.2. Jacobi theta functions: Definitions and properties 144
7.3. Main result: Asymptotics of the partition function 148
7.4. Equilibrium measure 149
7.5. Riemann – Hilbert analysis 160
7.6. Evaluation of X1 173
7.7. The constant term 192

Chapter 8. Ferroelectric Phase 197
8.1. Introduction and formulation of the main results 197
8.2. Meixner polynomials 198
8.3. Two interpolation problems 200
8.4. Evaluation of the ratio hk/h

Q
k 201

8.5. Evaluation of the constant factor 204
8.6. Ground state configuration 206

Chapter 9. Between the Phases 209
9.1. The critical line between the ferroelectric and disordered phases 209
9.2. The critical line between the antiferroelectric and disordered phases 212
9.3. The order of the phase transitions 214

Bibliography 221



Introduction

The theory of random matrices has proven to have a wide reach into many
areas of mathematics, physics, and statistics, and there are many excellent books
on the topic. The book of Mehta [61] has become a classic for anyone interested
in the subject, and several excellent books on random matrices have appeared in
more recent years: [4] by Bai and Silverstein; [3] by Anderson, Guionnet, and
Zeitouni; [42] by Forrester; [66] by Pastur and Shcherbina; the CRM volume of
lectures [43] edited by Harnad; [73] by Tao; and the Oxford handbook on random
matrix theory [1] edited by Akemann, Baik, and Di Francesco. See also the reviews
[34] by Di Francesco, Ginsparg, and Zinn-Justin; the ones in the MSRI volume [12],
edited by Bleher and Its; [33] by Di Francesco; and the forthcoming book [38] of
Eynard. These books and reviews vary in scope and perspective, and they present
different approaches to random matrices and their applications to combinatorics,
statistics, and physics. In this book we outline a connection from random matrices
to the six-vertex model of statistical physics. In particular, this model is related
to the unitary matrix ensembles, which are among the most widely studied of the
matrix ensembles. For unitary ensembles there is a direct connection to orthogonal
polynomials on the real line, and the asymptotics of partition functions as well
as local spectral statistics can be studied using the Riemann – Hilbert approach.
The focus of this book is a description of the Riemann – Hilbert method for both
continuous and discrete orthogonal polynomials, and applications of this approach
to matrix models as well as to the six-vertex model.

The Riemann –Hilbert approach to ensembles of random matrices was initi-
ated in the late 1990s in the papers [10] by Bleher and Its, and [29, 30] by Deift,
Kriecherbauer, McLaughlin, Venakides, and Zhou, and it became a powerful tool
in the theory of universality and critical phenomena in random matrices. In par-
ticular, the Riemann – Hilbert method allows for an asymptotic analysis of a wide
class of orthogonal polynomials, which was a vital ingredient in the proof of uni-
versality of scaling limits for correlations of eigenvalues. The main ideas of the
Riemann – Hilbert approach to orthogonal polynomials and random matrices are
nicely described in the the lectures [27] by Deift. Chapter 2 of this book is adapted
from the paper [29].

The six-vertex model dates back to Slater [69] in the early 1940s, and is one of
the integrable models of 2-d statistical physics, see [7,67]. The domain wall bound-
ary conditions considered in this book were introduced by Korepin [50] in 1982.
In that paper certain recursions for the partition function were derived. Subse-
quently these recursions were used by Izergin [46] to give an explicit determinantal
formula for the partition function. This formula is the basis for the asymptotic
analysis described in this book, and is known as the Izergin –Korepin formula.
The relation of the Izergin –Korepin formula to ensembles of random matrices and

vii



viii INTRODUCTION

orthogonal polynomials was discovered and used by Zinn-Justin [78, 79]. For cer-
tain values of the parameters, the relevant orthogonal polynomials are classical. In
these cases, the Izergin – Korepin formula was used by Colomo and Pronko [23–26]
to give expressions for the 1-, 2-, and 3-enumeration of alternating sign matrices.
Outside of these special cases the orthogonal polynomials are not classical, and
the Riemann – Hilbert approach was employed in a series of papers by Bleher and
coauthors [8, 9, 13–15].

The general outline for the book is as follows:
• In Chapter 1 we introduce the unitary matrix ensembles and describe their

connections to orthogonal polynomials and integrable systems.
• In Chapter 2 we discuss the Riemann – Hilbert (RH) approach to random

matrix ensembles, adapted from the original approach of the paper [29] and the
book [27]. We give general formulas for asymptotics of recurrence coefficients for
orthogonal polynomials, and give a proof of the universality of the sine and Airy
kernels in the bulk and at the edge, respectively, of the spectrum.

• In Chapter 3 we consider an extension of the RH approach to discrete or-
thogonal polynomials on an infinite lattice, which was originally developed in the
book [5] of Baik, Kriecherbauer, McLaughlin, and Miller for discrete orthogonal
polynomials on a finite lattice, and then extended to an infinite lattice in the paper
[16] by Bleher and Liechty. Again we give general formulas for asymptotics of recur-
rence coefficients. Universality of the local correlations in the discrete orthogonal
polynomial ensemble is discussed, and we give a proof of the scaling limit of the
correlation kernel at the point which separates a band from a saturated region.

• In Chapter 4 we introduce the six vertex model with with domain wall bound-
ary conditions.

• In Chapter 5 we derive the Izergin –Korepin formula for the partition function
of the six vertex model with with domain wall boundary conditions. The proof is
based on the Yang – Baxter equations, and we follow the elegant approach of the
papers [51, 55].

• In Chapters 6 – 8 we obtain the large n asymptotic formulas for the partition
function in different phase regions on the phase diagram. These chapters follow the
works [9, 13, 15]. The methods of Chapters 2 and 3 are applied, and all details of
the analysis are presented.

• In Chapter 9 we discuss the asymptotics of the partition function on the
critical lines between the phases, as well as the phase transitions. The results of
the papers [8, 14] for the partition function on the critical lines are discussed, but
we do not present detailed proofs in this book.

Acknowledgements. In part, this book is based on lectures which the first author
gave at different universities: Indiana University – Purdue University Indianapolis;
Centre de recherches mathématiques, Montréal; Katholieke Universiteit of Leuven,
Belgium; and the National University of Singapore, Singapore. The initial work
on this book was done during the semester long program Random Matrix Theory,
Interacting Particle Systems and Integrable Systems at the Mathematical Sciences
Research Institute (MSRI) in Berkeley, California, in the fall of 2010. We would like
to thank MSRI and the organizers of that program, Jinho Baik, Alexei Borodin,
Percy Deift, Alice Guionnet, Craig Tracy, and Pierre van Moerbeke, for allowing us
the opportunity to be there. We would also like to thank various people for useful
comments and discussions over the years, including Thomas Bothner, Percy Deift,
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This book provides a detailed description of the Riemann-Hilbert approach (RH approach) 
to the asymptotic analysis of both continuous and discrete orthogonal polynomials, and 
applications to random matrix models as well as to the six-vertex model. The RH approach 
was an important ingredient in the proofs of universality in unitary matrix models. This 
book gives an introduction to the unitary matrix models and discusses bulk and edge 
universality. The six-vertex model is an exactly solvable two-dimensional model in statis-
tical physics, and thanks to the Izergin-Korepin formula for the model with domain wall 
boundary conditions, its partition function matches that of a unitary matrix model with 
nonpolynomial interaction. The authors introduce in this book the six-vertex model and 
include a proof of the Izergin-Korepin formula. Using the RH approach, they explicitly 
calculate the leading and subleading terms in the thermodynamic asymptotic behavior of 
the partition function of the six-vertex model with domain wall boundary conditions in all 
the three phases: disordered, ferroelectric, and antiferroelectric.


