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Preface

The symplectic revolution of the 1980s gave rise to the discovery of sur-
prising rigidity phenomena involving symplectic manifolds, their subsets,
and their diffeomorphisms. These phenomena have been detected with the
help of a variety of novel powerful methods, including Floer theory, a version
of Morse theory on the loop spaces of symplectic manifolds. A number of
recent advances show that there is yet another manifestation of symplectic
rigidity, taking place in function spaces associated to a symplectic manifold.
These spaces exhibit unexpected properties and interesting structures, giv-
ing rise to an alternative intuition and new tools in symplectic topology, and
providing a motivation to study the function theory on symplectic manifolds,
which forms the subject of the present book.

Recall that a symplectic structure on a 2n-dimensional manifold M is
given by a closed differential 2-form ω which in appropriate local coordinates
is given by ω =

∑n
j=1 dpj ∧ dqj . The Poisson bracket of a pair of smooth

compactly supported functions F,G on M is a canonical operation given by

{F,G} =
∑
j

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)
.

The Poisson bracket, which is one of our main characters, plays a fun-
damental role in symplectic geometry and its applications. For instance,
it governs Hamiltonian mechanics. The symplectic manifold M serves as
the phase space of a mechanical system. The evolution (or Hamiltonian
flow) ht : M → M of the system is determined by its time-dependent en-
ergy Ht ∈ C∞(M). Hamilton’s famous equation describing the motion of

the system is given, in the Heisenberg picture, by Ḟt = {Ft, Ht}, where
Ft = F ◦ ht stands for the time evolution of an observable function F on
M under the Hamiltonian flow ht. The diffeomorphisms ht coming from all
possible energies Ht form a group Ham(M,ω), called the group of Hamil-
tonian diffeomorphisms. For closed simply connected manifolds this group
is just the identity component of the symplectomorphism group. The group
Ham can be considered as an infinite-dimensional Lie group. The function
space C∞(M) is, roughly speaking, the Lie algebra of this group, and the
Poisson bracket is its Lie bracket.

The structure of the function theory we are going to develop can be
illustrated with the help of the following picture. Fix your favorite t > 0

ix
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Ham(M,ω)

1

ht

t → ∞

t → 0

Figure 0.1. Two opposite regimes

and consider the natural mapping C∞(M) → Ham(M) which takes a (time-
independent) function H to the time-t map ht of the corresponding Hamil-
tonian flow. In principle, this mapping enables one to translate information
about Hamiltonian diffeomorphisms (which nowadays is quite a developed
subject, see Chapter 4) into the language of function spaces. This naive
plan works successfully in two opposite regimes, infinitesimal (when t → 0)
and asymptotic (when t →∞) (see Figure 0.1).

Working in the infinitesimal regime, one arrives at a surprising phenom-
enon of C0-robustness of the Poisson bracket. Observe that the expression
for the Poisson bracket involves the first derivatives of the functions F and
G. Nevertheless, the functional Φ(F,G) := ‖{F,G}‖, where ‖·‖ stands for
the uniform norm of a function, exhibits robustness with respect to C0-
perturbations. In particular, as we shall show in Chapter 2, Φ is lower semi-
continuous in the uniform norm. Even though this result sounds analytical
in nature, it turns out to be closely related to a remarkable bi-invariant
geometry on the group Ham(M,ω) discovered by Hofer in 1990. We shall
discuss various facets of C0-robustness of the Poisson bracket. One of them
is the Poisson bracket invariant of a quadruple of subsets of a symplectic
manifold discussed in Chapter 7. Its definition is based on an elementary
looking variational problem involving the functional Φ, while its study in-
volves a variety of methods of “hard” symplectic topology. Another facet is
symplectic approximation theory, discussed in Chapter 8. Its basic objective
is to find an optimal uniform approximation of a given pair of functions by
a pair of (almost) Poisson commuting functions.

The asymptotic regime gives rise to the theory of symplectic quasi-states
presented in Chapter 5. A symplectic quasi-state is a monotone functional
ζ : C∞(M) → R with ζ(1) = 1 which is linear on every Poisson-commutative
subalgebra, but not necessarily on the whole function space. The origins of
this notion go back to foundations of quantum mechanics and Aarnes’ the-
ory of topological quasi-states, an interesting branch of abstract functional
analysis. In our context, nonlinear quasi-states on higher-dimensional man-
ifolds are provided by Floer theory, the cornerstone of modern symplectic
topology. Interestingly enough, symplectic quasi-states are closely related to
quasi-morphisms on the group of Hamiltonian diffeomorphisms Ham(M,ω).
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Roughly speaking, a quasi-morphism on a group is “a homomorphism up
to a bounded error.” This group-theoretical notion coming from bounded
cohomology has been intensively studied in the past decade due to its var-
ious applications to geometry and dynamics. We discuss it in Chapter 3.
A recent survey of quasi-states and quasi-morphisms in symplectic topology
can be found in Entov’s ICM-2014 talk [57].

Quasi-states serve as a useful tool for a number of problems in symplectic
topology such as symplectic intersections, Hofer’s geometry on groups of
Hamiltonian diffeomorphisms, and Lagrangian knots. These applications
are presented in Chapter 6. In addition, quasi-states provide yet another
insight into robustness of the Poisson brackets, see Section 4.6.

Besides applications to some mainstream problems in symplectic topol-
ogy, function theory on symplectic manifolds opens up a prospect of using
“hard” symplectic methods in quantum mechanics. Mathematical quantiza-
tion and, mostnotably, the quantum-classical correspondence principle pro-
vide a tool which enables one to translate basic notions of classical mechanics
into quantum language. In general, a meaningful translation of symplectic
rigidity phenomena involving subsets and diffeomorphisms faces serious an-
alytical and conceptual difficulties. However, such a translation becomes
possible if one shifts the focus from subsets and morphisms of manifolds to
function spaces. We present some first steps in this direction in Chapter 9.

The book is a fusion of a research monograph on function theory on
symplectic manifolds and an introductory survey of symplectic topology. On
the introductory side, the first chapter discusses some basic symplectic con-
structions and fundamental phenomena, including the Eliashberg–Gromov
C0-rigidity theorem, Arnold’s symplectic fixed point conjecture, and Hofer’s
metric, while in the last three chapters the reader will find an informal crash
course on Floer theory. Even though our intention was to make the book as
self-contained as possible, the reader is encouraged to consult earlier sym-
plectic literature, such as the classical monographs [107,108] by McDuff and
Salamon. We also refer the reader to the manuscript by Oh [121] on Floer
theory. The reader is assumed to have familiarity with basic differential and
algebraic topology.

Most of the results presented in the book are based on a number of joint
papers by L.P. with Michael Entov. L.P. expresses his gratitude to Michael
for long years of pleasant collaboration. Furthermore, some central results
of the book are joint with Lev Buhovsky (Poisson bracket invariants and
symplectic approximation), Yakov Eliashberg (Lagrangian knots), and Frol
Zapolsky (Poisson bracket inequality and rigidity of partitions of unity).
L.P. cordially thanks all of them.

Parts of the material have been taught by L.P. in graduate courses at
University of Chicago and Tel Aviv University, in a lecture series at UCLA,
and (with the assistance of D.R.) in a mini-course at University of Mel-
bourne. We thank these institutions for such an invaluable opportunity. We
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are indebted to Strom Borman, Lev Buhovsky, François Charette, Adi Dick-
stein, Michael Entov, Morimichi Kawasaki, Asaf Kislev, Karina Samvelyan,
Egor Schelukhin, and Frol Zapolsky for very useful comments on the manu-
script, as well as to Dorit Aharonov, Peter Albers, Paul Biran, Paul Busch,
Danny Calegari, Yakov Eliashberg, Helmut Hofer, Vincente Humilière, Gil
Kalai, Vadim Kaloshin, Yael Karshon, Guy Kindler, Dusa McDuff, Yong-
Geun Oh, Yaron Ostrover, Iosif Polterovich, Victor Polterovich, Dietmar
Salamon, Felix Schlenk, Paul Seidel, Sobhan Seyfaddini, Ivan Smith, Misha
Sodin, Shmuel Weinberger, Amie Wilkinson, and Jinxin Xue for illuminat-
ing discussions on various topics of the book. Additionally, we thank the
anonymous referees for very helpful critical remarks.

We are indebted to Andrei Iacob for a superb copyediting and very useful
critical comments and suggestions on the presentation, and to Carl Sperber
for correcting a number of grammatical and stylistic errors.

Finally, special thanks go to François Lalonde, who encouraged us to
write this book.

This research has been partially supported by the National Science Foun-
dation grant DMS-1006610, the Israel Science Foundation grants 509/07 and
178/13, as well as the European Research Council Advanced grant 338809.
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de la mécanique classique, C. R. Acad. Sci. Paris 261 (1965), 3719–3722.
5. , On a characteristic class entering into conditions of quantization (Russian),

Funkcional. Anal. i Prilozen. 1 (1967), 1–14.
6. , A stability problem and ergodic properties of classical dynamical systems

(Russian), Proc. Internat. Congr. Math. (Moscow, 1966), Izdat. “Mir”, Moscow, 1968,
pp. 387–392.

7. , Mathematical methods of classical mechanics, translated by K. Vogtmann
and A. Weinstein, Grad. Texts in Math., vol. 60, Springer, New York, 1978.

8. , The first steps of symplectic topology (Russian), Uspekhi Mat. Nauk 41
(1986), no. 6(252), 3–18, 229; English transl., Russian Math. Surveys 41 (1986),
no. 6, 1–21.

9. E. Arthurs and M. S. Goodman, Quantum correlations: a generalized Heisenberg
uncertainty relation, Phys. Rev. Lett. 60 (1988), no. 24, 2447–2449.

10. E. Arthurs and J. L. Kelly Jr., On the simultaneous measurement of a pair of con-
jugate observables, Bell System Tech. J. 44 (1965), 725–729.

11. M. F. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14
(1982), no. 1, 1–15.
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114. J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120
(1965), 286–294.

115. R. Narasimhan, Analysis on real and complex manifolds, Adv. Stud. Pure Math.,
vol. 1, Masson, Paris; North-Holland, Amsterdam, 1968.

116. M. A. Neumark, On a representation of additive operator set functions, C. R. (Dok-
lady) Acad. Sci. URSS (N.S.) 41 (1943), 359–361.

117. Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic
disks. II: (CPn,RPn), Comm. Pure Appl. Math. 46 (1993), no. 7, 995–1012.



190 BIBLIOGRAPHY

118. , Chain level Floer theory and Hofer’s geometry of the Hamiltonian diffeo-
morphism group, Asian J. Math. 6 (2002), no. 4, 579–624.

119. , Construction of spectral invariants of Hamiltonian paths on closed symplectic
manifolds, The Breadth of Symplectic and Poisson Geometry (J. E. Marsden and
T. S. Ratiu, eds.), Progr. Math., vol. 232, Birkhäuser Boston, Boston, MA, 2005,
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spec action spectrum, 52
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originated as a geometric tool for problems of classical mechanics. Since the 1980s, 
powerful methods such as Gromov’s pseudo-holomorphic curves and Morse-Floer theory 
on loop spaces gave rise to the discovery of unexpected symplectic phenomena. The present 
book focuses on function spaces associated with a symplectic manifold. A number of recent 
advances show that these spaces exhibit intriguing properties and structures, giving rise 
to an alternative intuition and new tools in symplectic topology. The book provides an 
essentially self-contained introduction into these developments along with applications to 
symplectic topology, algebra and geometry of symplectomorphism groups, Hamiltonian 
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