Titles in This Series

15 Nathaniel Dean and Gregory E. Shannon, Editors, Computational Support for Discrete Mathematics
14 Robert Calderbank, G. David Forney, Jr., and Nader Moayeri, Editors, Coding and Quantization: DIMACS/IEEE Workshop
13 Jin-Yi Cai, Editor, Advances in Computational Complexity Theory
12 David S. Johnson and Catherine C. McGeoch, Editors, Network Flows and Matching: First DIMACS Implementation Challenge
11 Larry Finkelstein and William M. Kantor, Editors, Groups and Computation
10 Joel Friedman, Editor, Expanding Graphs
9 William T. Trotter, Editor, Planar Graphs
8 Simon Gindikin, Editor, Mathematical Methods of Analysis of Biopolymer Sequences
7 Lyle A. McGeoch and Daniel D. Sleator, Editors, On-Line Algorithms
6 Jacob E. Goodman, Richard Pollack, and William Steiger, Editors, Discrete and Computational Geometry: Papers from the DIMACS Special Year
5 Frank Hwang, Clyde Monma, and Fred Roberts, Editors, Reliability of Computer and Communication Networks
4 Peter Gritzmann and Bernd Sturmfels, Editors, Applied Geometry and Discrete Mathematics, The Victor Klee Festschrift
3 E. M. Clarke and R. P. Kurshan, Editors, Computer-Aided Verification '90
2 Joan Feigenbaum and Michael Merritt, Editors, Distributed Computing and Cryptography
1 William Cook and Paul D. Seymour, Editors, Polyhedral Combinatorics
This page intentionally left blank
Computational Support for Discrete Mathematics
This page intentionally left blank
DIMACS Series in Discrete Mathematics and Theoretical Computer Science

Volume 15

Computational Support for Discrete Mathematics

DIMACS Workshop
March 12–14, 1992

Nathaniel Dean
Gregory E. Shannon
Editors

NSF Science and Technology Center
in Discrete Mathematics and Theoretical Computer Science
A consortium of Rutgers University, Princeton University,
AT&T Bell Labs, Bellcore

American Mathematical Society
This DIMACS volume on Computational Support for Discrete Mathematics contains papers from talks at a workshop held at DIMACS, March 12–14, 1992.

1991 Mathematics Subject Classification. Primary 68–XX; Secondary 05–XX.

Library of Congress Cataloging-in-Publication Data
 p. cm. — (DIMACS series in discrete mathematics and theoretical computer science; v. 15)
 Includes bibliographical references.
 ISBN 0-8218-6605-2
QA76.9.M35C64 1994 94-10076
511.6’028551—dc20 CIP

Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy an article for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication (including abstracts) is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Manager of Editorial Services, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@math.ams.org.

The appearance of the code on the first page of an article in this publication indicates the copyright owner's consent for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law, provided that the fee of $1.00 plus $.25 per page for each copy be paid directly to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, Massachusetts 01923. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

© Copyright 1994 by the American Mathematical Society except for papers copyrighted by Bell Communications Research, Inc. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government.

Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

Printed on recycled paper.

This volume was prepared by the authors using \AMSTeX and \LaTeX, the American Mathematical Society’s \TeX macro systems.
Contents

Foreword ix
Preface xi

Analyzing Integer Sequences
A. BHANSALI AND S. S. SKIENA 1

GDR: A Visualization Tool for Graph Algorithms
M. STALLMANN, R. CLEAVELAND, AND P. HEBBAR 17

Application of Computational Tools for Finitely Presented Groups
G. HAVAS AND E. F. ROBERTSON 29

Animated Algorithms Computer Science Education with Algorithm Animation
P. A. GLOOR, I. LEE, AND A. VELEZ-SOSA 41

AGE: An Animated Graph Environment
J. ABELLO, S. SUDARSKY, T. VЕATCH, AND J. WALLER 57

An Interactive, Graphical, Educationally Oriented Graph Analysis Package
D. S. DILLON AND F. R. SMIETANA 71

Network Assistant to Construct, Test, and Analyze Graph Network Algorithms
G. H. BRADLEY AND H. F. OLIVEIRA 75

Computing Spanning Trees in NETPAD
KEH-WEI LIH, N. DEAN, AND M. MIHAIL 85

An Empirical Assessment of Algorithms for Constructing a Minimum Spanning Tree
B. M. E. MORET AND H. D. SHAPIRO 99

Rectilinear Steiner Tree Minimization on a Workstation
C. THOMBORSON, B. ALPERN, AND L. CARTER 119

The XYZ GeoBench for the Experimental Evaluation of Geometric Algorithms
P. SCHORN 137
Monitoring an Algorithm’s Execution
 D. A. BERQUE AND M. K. GOLDBERG 153

Implementation of Parallel Graph Algorithms on the MasPar
 T.-S. HSU, V. RAMACHANDRAN, AND N. DEAN 165

Monte Carlo and Markov Chain Techniques for Network Reliability and
 Sampling
 A. L. BUCHSBAUM AND M. MIHAIL 199

Networks and Reliability in Maple
 D. D. HARMS, J. S. DEVITT, AND C. J. COLBOURN 223

GMP/X, An X-Windows Based Graph Manipulation Package
 G. ZIMMERMAN, A. H. ESFAHANIAN, AND D. VASQUEZ 245

METANET: A System for Network Analysis
 C. GOMEZ AND M. GOURSAT 255

GraphTool: A Tool for Interactive Design and Manipulation of Graphs and
 Graph Algorithms
 V. J. LEUNG, M. B. DILLENCOURT, AND A. L. BLISS 269

Improvements to GraphPack: A System to Manipulate Graphs and Digraphs
 M. KRISHNAMOORTHY, A. SUESS, M. ONGHENA, F. OXAAL, AND
 T. SPENCER 279

Extending a Graph Browser for Topological Graph Theory
 J. I. HELFMAN AND J. L. GROSS 297

Test Case Construction for the Vertex Cover Problem
 L. A. SANCHIS 315

CallCo: Software for Combinatorics
 M. DELEST AND N. ROUILLO 327

Formal Calculus and Enumerative Combinatorics
 M. DELEST 335

Implementing Finite State Machines
 K. SUTNER 347

NPDA: A Tool for Visualizing and Simulating Nondeterministic Pushdown
 Automata
 D. CAUGHERTY AND S. H. RODGER 365

Recognizing the Hidden Structure of Cayley Graphs
 I. J. DEJTER 379

A Concept for the Representation of Data and Algorithms
 D. MöLLER AND R. MÜLLER 391
Foreword

This DIMACS volume on Computational Support for Discrete Mathematics contains papers from talks at a workshop held at DIMACS, March 12–14, 1992.

We would especially like to thank the workshop’s organizers, Nathaniel Dean and Gregory E. Shannon, for organizing this workshop that brought together many outstanding speakers in this field.

Diane Souvaine, Acting Director
Robert Tarjan, Co-Director
Preface

This volume contains papers based on talks given at the DIMACS Workshop on Computational Support for Discrete Mathematics, March 12-14, 1992 at Rutgers University in Piscataway, New Jersey. This workshop was designed to facilitate working relationships among a diverse group of researchers concerned with the development of software for various aspects of experimental discrete mathematics. Their goal is to provide effective computational tools for research, applications prototyping, and various levels of education. We are grateful to DIMACS and NSF for their generous support.

With the recent technological advances in workstations, graphics, graphical user interfaces, and object oriented programming languages, a significant number of researchers are developing general-purpose software and integrated software systems for domains in discrete mathematics, including graph theory, combinatorics, combinatorial optimization, and sets. The goal of such software is to provide effective computational tools for research, applications prototyping, and teaching in these domains. Developing such software leads to new problems that are significant in their own right. Such problems include: effectively managing large objects or sets internally and externally; designing reusable software, interfaces, and algorithm libraries; developing effective object models for interactive algorithm design and programming; and developing user interfaces that effectively display excessively large and complex combinatorial objects.

Unfortunately, there are no obvious conferences, journals, special interest groups, or newsletters for researchers, developers, and educators interested in such software to report results, announce new systems, exchange ideas, or outline important research directions and strategies. With this lack of communication, there is gross duplication of effort, ad hoc progress in research, and a lack of viability, acceptability, and application of this area’s work.

The primary goal of the workshop was to facilitate working relations between the researchers, developers, and educators, identify common research interests and applications, to demonstrate current systems, and to identify how and where workers in this area can regularly communicate and meet. A second and equally important goal was to document the current and past research in this area through a substantial proceedings.

Copyright © 1994 Bell Communications Research, Inc., printed with permission.
The program was exciting. There were three excellent, inspiring talks by the keynote speakers: Ronald Read "Computer-assisted graph theory: recollections and speculations", Jon Bentley "Computational support for discrete algorithms", and Marc Brown "Algorithm animation: techniques, a system, and a novel application". The breath and depth of the invited and contributed talks were enormous, the informal discussion sessions were informative, and the software demonstrations were outstanding. There were also papers related to education and to experimental discrete mathematics. These included descriptions of current software for discrete mathematics, experience with specific implementation issues, experimental techniques and results, and applications. All of the papers were refereed.

The editors hope and expect that the considerable interest and collaborative efforts generated by this workshop will lead to continued developments with significant impact on theoretical research, applications and education.

Nathaniel Dean
Gregory E. Shannon