DIMACS
Series in Discrete Mathematics
and Theoretical Computer Science

Volume 44

DNA Based Computers II

DIMACS Workshop
June 10–12, 1996

Laura F. Landweber
Eric B. Baum
Editors

American Mathematical Society
Selected Titles in This Series

44 Laura F. Landweber and Eric B. Baum, Editors, DNA Based Computers II
43 Panos Pardalos, Sanguthevar Rajasekaran, and José Rolim, Editors, Randomization Methods in Algorithm Design
42 Ding-Zhu Du and Frank K. Hwang, Editors, Advances in Switching Networks
41 David Aldous and James Propp, Editors, Microsurveys in Discrete Probability
40 Panos M. Pardalos and Dingzhu Du, Editors, Network Design: Connectivity and Facilities Location
39 Paul W. Beame and Samuel R Buss, Editors, Proof Complexity and Feasible Arithmetics
38 Rebecca N. Wright and Peter G. Neumann, Editors, Network Threats
37 Boris Mirkin, F. R. McMorris, Fred S. Roberts, and Andrey Rzhetsky, Editors, Mathematical Hierarchies and Biology
36 Joseph G. Rosenstein, Deborah S. Franzblau, and Fred S. Roberts, Editors, Discrete Mathematics in the Schools
35 Dingzhu Du, Jun Gu, and Panos M. Pardalos, Editors, Satisfiability Problem: Theory and Applications
34 Nathaniel Dean, Editor, African Americans in Mathematics
33 Ravi B. Boppana and James F. Lynch, Editors, Logic and Random Structures
32 Jean-Charles Grégoire, Gerard J. Holzmann, and Doron A. Peled, Editors, The SPIN Verification System
31 Neil Immerman and Phokion G. Kolaitis, Editors, Descriptive Complexity and Finite Models
30 Sandeep N. Bhatt, Editor, Parallel Algorithms: Third DIMACS Implementation Challenge
29 Doron A. Peled, Vaughan R. Pratt, and Gerard J. Holzmann, Editors, Partial Order Methods in Verification
28 Larry Finkelstein and William M. Kantor, Editors, Groups and Computation II
27 Richard J. Lipton and Eric B. Baum, Editors, DNA Based Computers
26 David S. Johnson and Michael A. Trick, Editors, Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge
25 Gilbert Baumslag, David Epstein, Robert Gilman, Hamish Short, and Charles Sims, Editors, Geometric and Computational Perspectives on Infinite Groups
23 Panos M. Pardalos, David I. Shalloway, and Guoliang Xue, Editors, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding
22 Panos M. Pardalos, Mauricio G. C. Resende, and K. G. Ramakrishnan, Editors, Parallel Processing of Discrete Optimization Problems
21 D. Frank Hsu, Arnold L. Rosenberg, and Dominique Sotteau, Editors, Interconnection Networks and Mapping and Scheduling Parallel Computations
20 William Cook, László Lovász, and Paul Seymour, Editors, Combinatorial Optimization
19 Ingemar J. Cox, Pierre Hansen, and Bela Julesz, Editors, Partitioning Data Sets
17 Eric Sven Ristad, Editor, Language Computations
16 Panos M. Pardalos and Henry Wolkowicz, Editors, Quadratic Assignment and Related Problems
DNA Based Computers II

DIMACS Workshop
June 10–12, 1996

Laura F. Landweber
Eric B. Baum
Editors

NSF Science and Technology Center in Discrete Mathematics and Theoretical Computer Science
A consortium of Rutgers University, Princeton University, AT&T Labs, Bell Labs, and Bellcore

American Mathematical Society
This conference was published in October 1998 and carries the proceedings of a conference held June 10–12, 1996.

This DIMACS volume contains papers from the Second DIMACS Workshop on DNA Based Computers. The Workshop was held on June 10–12, 1996, at Princeton University, Princeton, N. J.

1991 Mathematics Subject Classification. Primary 92–06, 92B05, 92C40, 68Q05.

Library of Congress Cataloging-in-Publication Data
DNA based computers II : DIMACS workshop, June 10–12, 1996 / Laura F. Landweber, Eric B. Baum, editors.
 p. cm. — (DIMACS series in discrete mathematics and theoretical computer science ; v. 44) “NSF Science and Technology Center in Discrete Mathematics and Theoretical Computer Science, a consortium of Rutgers University, Princeton University, AT&T Labs, Bell Labs, and Bellcore.”
 Includes bibliographical references.
 ISBN 0-8218-0756-0
 QA76.887.D52 1998
 511.3—dc21 98-35278
 CIP

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Assistant to the Publisher, American Mathematical Society, P.O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)

© 1999 by the American Mathematical Society. All rights reserved.
 The American Mathematical Society retains all rights except those granted to the United States Government.
 Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at URL: http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 04 03 02 01 00 99
Contents

Foreword vii
Introduction ix
Acknowledgments xi
A sticker based model for DNA computation
Sam Roweis, Erik Winfree, Richard Burgoyne, Nickolas V. Chelyapov, Myron F. Goodman, Paul W. K. Rothemund, and Leonard M. Adleman 1
On applying molecular computation to the data encryption standard
Leonard M. Adleman, Paul W. K. Rothemund, Sam Roweis, and Erik Winfree 31
Massively parallel DNA computation: Expansion of symbolic determinants
Thomas H. Leete, Matthew D. Schwartz, Robert M. Williams, David H. Wood, Jerome S. Salem, and Harvey Rubin 45
Universal DNA computing models based on the splicing operation
Gheorghe Păun 59
Running dynamic programming algorithms on a DNA computer
Eric B. Baum and Dan Boneh 77
A molecular computation of the road coloring problem
Natasa Jonoska and Stephen A. Karl 87
DNA based molecular computation: Template-template interactions in PCR
Peter D. Kaplan, Guillermo Cecchi, and Albert Libchaber 97
Use of a horizontal chain reaction for DNA-based addition
Frank Guarnieri and Carter Bancroft 105
Computation with DNA: Matrix multiplication
John S. Oliver 113
A surface-based approach to DNA computation
Qinghua Liu, Zhen Guo, Zhengdong Fei, Anne E. Condon, Robert M. Corn, Max G. Lagally, and Lloyd M. Smith 123
Mesoscopic computer engineering: Automating DNA-based molecular computing via traditional practices of parallel computer architecture design

John-Thones Ameny 133

Error-resistant implementation of DNA computations

Martyn Amos, Alan Gibbons, and David Hodgson 151

Making DNA computers error resistant

Dan Boneh, Christopher Dunworth, Richard J. Lipton, and Jiří SGall 163

Active transport in biological computing

Stuart A. Kurtz, Stephen R. Mahaney, James S. Royer, and Janos Simon 171

RNA based computing: Some examples from RNA catalysis and RNA editing

Laura F. Landweber 181

Universal computation via self-assembly of DNA: Some theory and experiments

Erik Winfree, Xiaoping Yang, and Nadrian C. Seeman 191

The perils of polynucleotides: The experimental gap between the design and assembly of unusual DNA structures

Nadrian C. Seeman, Hui Wang, Bing Liu, Jing Qi, Xiaojun Li, Xiaoping Yang, Furong Liu, Weiqiong Sun, Zhiyong Shen, Ruojie Sha, Chengde Mao, Yinli Wang, Siwei Zhang, Tsu-Ju Fu, Shouming Du, John E. Mueller, Yuwen Zhang, and Junghuei Chen 215

DNA sequences useful for computation

Eric B. Baum 235

A restricted genetic alphabet for DNA computing

Kalim U. Mir 243

Good encodings for DNA-based solutions to combinatorial problems

R. Deaton, R. C. Murphy, M. Garzon, D. R. Franceschetti, and S. E. Stevens, Jr. 247

DNA computations can have global memory

Richard J. Lipton 259

Exascale computer algebra problems interconnect with molecular reactions and complexity theory

Robert M. Williams and David Harlan Wood 267
Foreword

The Second Annual Workshop on DNA Based Computers was held on June 10–12, 1996 at Princeton University, N. J. We would like to express our appreciation to Eric Baum, Dan Boneh, Peter Kaplan, Richard Lipton, John Reif, and Nadrian Seeman for their efforts to organize and plan this successful workshop.

The Workshop was part of the broader Special Year on DNA Computing. We extend our thanks to Richard Lipton and Laura Landweber for their work over many months as Special Year organizers.

The Workshop was a forum for bringing together researchers working on all areas that relate directly to computing with DNA, including algorithms, applications, techniques, architectures, computational processes in vivo, and relevant ideas regarding biological evolution.

DIMACS gratefully acknowledges the generous support that makes these programs possible. The National Science Foundation, through its Science and Technology Center program, the New Jersey Commission on Science and Technology, and DIMACS’ partners at Rutgers, Princeton, AT&T Labs Research, Bell Labs, and Bellcore generously supported the Special Year.

Fred S. Roberts
Director

Bernard Chazelle
Co-Director for Princeton
This page intentionally left blank
Introduction

DNA Computing has fueled a tremendous amount of excitement by offering a fresh paradigm for performing and viewing computations: this is biological mathematics, while also mathematical biology. Encoding of data in DNA strings coupled with the power of molecular biology now allows the execution of computational operations on single strands of DNA in the laboratory. As a small drop of solution can house several quadrillion DNA molecules, DNA computers use much less energy and space than traditional computers. Consequently, they offer the tantalizing potential of one day outperforming electronic computers. Computing with DNA is also massively parallel, with billions and trillions of molecules undergoing simultaneous chemical reactions and performing computations almost spontaneously.

The product of a radically different marriage of computer science to molecular biology, the fledgling field of DNA computers began in 1994, when Leonard Adleman surprised the scientific community by using DNA molecules, protein enzymes, and chemicals to solve an instance of a hard computational problem. These proceedings from the Second DIMACS Workshop on DNA Based Computers at Princeton University – held only one year and a half after the publication of Adleman’s seminal experiment – contain a set of refereed papers that highlight some of the exciting progress in this field and together build a strong foundation for the current theory of molecular computation.

This volume introduces such important advances as “mark and destroy” DNA algorithms and the use of surface chemistry in DNA computing. It also includes a healthy discussion of the myriad possibilities as well as potential pitfalls, means of error correction, and general practicality of building DNA based computers. Several articles draw on the analogy between DNA computing and other cutting edge fields of biology such as directed evolution. In principle, both types of experiments search for a single or unique class of molecules in a random or heterogeneous mixture. Such techniques have been enormously successful in discovering biological molecules with novel capacities for performing chemical reactions. As these molecules can even encode the solution to a mathematical problem, nucleic acid based computers may be viewed as a natural extension of test-tube evolution experiments that search a defined space of mathematical solutions. Indeed, they are “solutions of solutions!”

Laura F. Landweber, Princeton University
This page intentionally left blank
Acknowledgements

We gratefully acknowledge the generous support from our sponsors: DIMACS, NSF, and the NEC Research Institute. We also thank the other members of the program committee – Dan Boneh, Peter Kaplan, Richard Lipton, John Reif, and Nadrian Seeman – for helping to organize the conference. Lastly, we especially thank Tom Hagedorn for helping to produce this volume.

Laura Landweber, Princeton University

Eric Baum, NEC
This page intentionally left blank