Multiantenna Channels: Capacity, Coding and Signal Processing
Multiantenna Channels: Capacity, Coding and Signal Processing

DIMACS Workshop
Signal Processing for Wireless Transmission
October 7–9, 2002
DIMACS Center

Gerard J. Foschini
Sergio Verdú
Editors

Center for Discrete Mathematics and Theoretical Computer Science
A consortium of Rutgers University, Princeton University, AT&T Labs–Research, Bell Labs (Lucent Technologies), NEC Laboratories America, and Telcordia Technologies (with partners at Avaya Labs, IBM Research, and Microsoft Research)
This DIMACS volume presents the proceedings from the workshop Signal Processing for Wireless Transmission held at the DIMACS Center, Rutgers University, October 7–9, 2002.

2000 Mathematics Subject Classification. Primary 94A05, 94A13, 94A14, 94A15, 94A24, 94A40, 94B99, 15A52.

Library of Congress Cataloging-in-Publication Data
p. cm. — (DIMACS series in discrete mathematics and theoretical computer science ; v. 62)
Includes bibliographical references.
ISBN 0-8218-3407-X (alk. paper)

TK5102.9.D58 2002
621.382'2—dc22 2003057746

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)

© 2003 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 08 07 06 05 04 03
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vii</td>
</tr>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
</tbody>
</table>

Part I. Capacity of Multiantenna Channels

Broadband MIMO channel model for realistic capacity and system performance evaluations
Hao Xu, Dmitry Chizhik, Howard Huang, and Reinaldo Valenzuela
3

Bandwidth-power tradeoff of multi-antenna systems in the low-power regime
Antonia M. Tulino, Angel Lozano, and Sergio Verdú
15

Distribution of MIMO capacity in the presence of correlated signals and interferers: A (not so) large N analysis
Aris L. Moustakas, Steven H. Simon, and Anirvan M. Sengupta
43

Optimality of beamforming in multiple transmitter multiple receiver communication systems with partial channel knowledge
Steven H. Simon and Aris L. Moustakas
57

Part II. Capacity of Broadcast Channels and Dirty-Paper Coding

Duality, dirty paper coding, and capacity for multiuser wireless channels
Nihar Jindal, Sriram Vishwanath, Syed Jafar, and Andrea Goldsmith
71

On the capacity of the multiple antenna broadcast channel
David Tse and Pramod Viswanath
87

Capacity bounds for Gaussian vector broadcast channels
S. Vishwanath, G. Kramer, S. Shamai, S. Jafar, and A. Goldsmith
107

Writing on dirty tape with LDPC codes
Giuseppe Caire and Shlomo Shamai (Shitz)
123

Dirty paper coding: Perturbing off the infinite dimensional lattice limit
Gerard J. Foschini and Alvaro H. Diaz
141
Part III. Signal Processing for Multiantenna Channels

Maximum-likelihood decoding and integer least-squares: The expected complexity
Babak Hassibi and Haris Vikalo 161

Slowing the time-fluctuating MIMO channel
Dmitry Chizhik 193

A spacetime architectural superstructure enabling efficient multiple antenna communication
G. J. Foschini and M. Sellathurai 213

Space-time coding with iterative receiver interfaces
Ezio Biglieri, Alessandro Nordio, and Giorgio Taricco 233

Diversity order of space-time block codes in inter-symbol interference multiple-access channels
S. N. Diggavi, N. Al-Dhahir, and A. R. Calderbank 247

Pilot assisted estimation of MIMO fading channel response and achievable data rates
Dragan Samardzija and Narayan Mandayam 255

Part IV. Networking Capacity

Challenges in UWB signaling for adhoc networking
Younes Souilmi and Raymond Knopp 271

Efficient multihop broadcast for wideband systems
Ivana Maric and Roy Yates 285
Foreword

A workshop on Signal Processing for Wireless Transmission was held at Rutgers University on October 7–9, 2002. We would like to express our appreciation to Gerard Foschi and Sergio Verdú for their efforts to organize and plan this successful conference.

The workshop was part of the Special Focus on Computational Information Theory and Coding. We extend our thanks to Robert Calderbank, Chris Rose, Amin Shokrollahi, Emina Soljanin, and Sergio Verdú for their work as special focus organizers.

The workshop brought together theoreticians and practitioners working on wireless communications, information, and coding theory from a variety of perspectives. The main themes of the workshop included capacity of multiantenna channels and of vector broadcast channels, “dirty-paper” coding, signal processing, and ad hoc networking in wideband channels. These are all major themes in current research in physical-layer design for wireless communication.

DIMACS gratefully acknowledges the generous support that makes these programs possible. The National Science Foundation; the New Jersey Commission on Science and Technology; DIMACS’ partners at Rutgers, Princeton, AT&T Labs-Research, Bell Labs, NEC Laboratories America, and Telcordia Technologies; and its affiliated partners at Avaya Labs, IBM Research, and Microsoft Research have generously supported the special focus.

Fred S. Roberts
Director

Robert Tarjan
Co-Director for Princeton
This page intentionally left blank
Preface

The DIMACS Workshop on Signal Processing for Wireless Transmission was held at Rutgers University on October 7–9, 2002, under the auspices of the DIMACS Special Focus on Computational Information Theory and Coding. Twenty-six invited presentations were delivered (http://dimacs.rutgers.edu/Workshops/Wireless/) by leading researchers in the fields of wireless communications, information and coding theory. Workshop attendees included researchers from institutions in North America, Europe, the Middle East and Asia. Through the agency of DIMACS, we were able to support the participation of a substantial number of students. In the true spirit of a workshop, there was considerable interaction among participants, accentuated by a sense of excitement over the presentation of fast-breaking results.

Several forces are coalescing to make this an exciting time in the field of physical-layer design for wireless communication: the relentless advance in VLSI technology, the recent breakthroughs in signal processing for multiantenna and multiuser systems, and the increased pressure for efficient utilization of scarce spectral resources. These forces make information-theoretic limits and the means of approaching them increasingly relevant for emerging wireless communication systems. This volume gives a snapshot of the range of challenges that are currently garnering a great deal of attention from the research community.

The first group of contributions on “Capacity of Multiantenna Channels” follows in the line of information-theoretic research pioneered at Bell Labs in the mid 1990s. The contribution by Xu, Chizhik, Huang and Valenzuela adds realism to the modeling of multiantenna channels by incorporating a number of key effects not captured in the canonical model. Even though much of the early emphasis on the information-theoretic analysis of multiantenna channels was on high signal-to-noise ratio (SNR) contexts, many practical embodiments, particularly in cellular systems, operate at low received energy per bit. The paper by Tulino, Lozano and Verdú considers the bandwidth-power tradeoff in the low SNR regime. The surprising relevance of large random matrix methods to systems with small numbers of antennas is illustrated in the paper by Moustakas, Simon and Sengupta, even with correlated channel coefficients. In another departure from the canonical setting, Simon and Moustakas analyze the impact of channel information at the transmitter array and determine under what conditions beamforming is optimal.

The second group of papers is devoted to the capacity of vector broadcast channels and its relationship with the problem of “dirty-paper coding”. In dirty-paper coding, introduced by Costa in 1983 building upon earlier work, in addition to the background noise, an interference component is present which is known at the transmitter but not at the receiver. Dirty-paper coding is especially relevant to
downlink communication, where the base station knows the channels and therefore knows the multiuser interference affecting each transmission. Although the sum-capacity has been solved recently, determination of the entire capacity region of the vector broadcast channel remains an open problem. Important advances towards its solution were announced at the workshop and reported in the paper by Jindal, Vishwanath, Jafar and Goldsmith; the paper by Tse and Viswanath; as well as the one by Vishwanath, Kramer, Shamai, Jafar and Goldsmith. The remaining issue to be settled in order to claim that the region put forth in those papers is the actual capacity region is the question of optimality of Gaussian codebooks.

The constructive counterpart to the capacity of dirty-paper coding is attracting considerable research. Caire and Shamai consider the application of low-density parity check codes and pulse-amplitude modulation in the design of systems that approach the fundamental limits when the interference is known at the transmitter only causally. After a tutorial presentation of dirty-paper coding, Foschini and Diaz explore what can be achieved with both one-dimensional lattices and in the asymptote of high-dimensional lattices.

The third part of the volume is devoted to signal processing. The analysis of the average computational complexity by Hassibi and Vikalo of the near-optimal sphere-decoding algorithm shows the considerable promise of this technique, which has applications beyond combating multiuser/multiantenna interference. A method to lower the signal processing complexity in channels with rapid fluctuations is presented in the contribution by Chizhik. This makes the gains promised by information-theoretic results approachable even in situations previously thought to be problematic. Foschini and Sellathurai show how to arrange a signal in space-time so as to achieve capacity with one-dimensional codecs when there is only one receive antenna. The technique is also shown to be effective in approaching capacity when the number of transmit antennas is much larger than the number of receive antennas. The use of iterative reception in conjunction with space-time codes is explored in the paper by Biglieri, Nordio and Taricco. Space-time block codes for channels that incorporate multiuser, intersymbol and multiantenna interference are considered by Diggavi, Al-Dhahir and Calderbank, who derive a simple formula for the diversity order. Most of the papers in this field assume perfect channel knowledge at the receiver. Samardzija and Mandayam explore the effect of imperfect channel estimation on achievable data rates.

The last group of papers in the volume explores issues related to ad hoc networking in wideband channels. Souilmi and Knopp examine the rates achievable by flash signaling in ultrawideband channels when only channel statistics are known at the receiver. Maric and Yates put forth the “accumulative broadcast” strategy in multihop environments where the objective is to minimize total transmitted energy.

It is a pleasure to acknowledge the expert guidance of Professor Fred S. Roberts, director of DIMACS. He generously provided his help and advice during the organization of the workshop and the preparation of this volume. We are also grateful to Ms. Shirley Hill of the American Mathematical Society for her diligent processing of the contents of this book. Finally, it is a pleasure to thank all the authors for their outstanding efforts that made this volume a reality.
Titles in This Series

62 Gerard J. Foschini and Sergio Verdú, Editors, Multiantenna Channels: Capacity, Coding and Signal Processing
61 M. F. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts, Editors, Bioconsensus
60 Saugata Basu and Laureano Gonzalez-Vega, Editors, Algorithmic and Quantitative Real Algebraic Geometry
59 Michael H. Goldwasser, David S. Johnson, and Catherine C. McGeoch, Editors, Data Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges
58 Simon Thomas, Editor, Set Theory: The Hajnal Conference
57 Eugene C. Freuder and Richard J. Wallace, Editors, Constraint Programming and Large Scale Discrete Optimization
56 Alexander Barg and Simon Litsyn, Editors, Codes and Association Schemes
55 Ding-Zhu Du, Panos M. Pardalos, and Jie Wang, Editors, Discrete Mathematical Problems with Medical Applications
54 Erik Winfree and David K. Gifford, Editors, DNA Based Computers V
53 Nathaniel Dean, D. Frank Hsu, and R. Ravi, Editors, Robust Communication Networks: Interconnection and Survivability
52 Sanguthevar Rajasekaran, Panos Pardalos, and D. Frank Hsu, Editors, Mobile Networks and Computing
51 Pierre Hansen, Patrick Fowler, and Maolin Zheng, Editors, Discrete Mathematical Chemistry
50 James M. Abello and Jeffrey Scott Vitter, Editors, External Memory Algorithms
49 Ronald L. Graham, Jan Kratochvíl, Jaroslav Nešetřil, and Fred S. Roberts, Editors, Contemporary Trends in Discrete Mathematics
48 Harvey Rubin and David Harlan Wood, Editors, DNA Based Computers III
47 Martin Farach-Colton, Fred S. Roberts, Martin Vingron, and Michael Waterman, Editors, Mathematical Support for Molecular Biology
46 Peng-Jun Wan, Ding-Zhu Du, and Panos M. Pardalos, Editors, Multichannel Optical Networks: Theory and Practice
45 Marios Mavronicolas, Michael Merritt, and Nir Shavit, Editors, Networks in Distributed Computing
44 Laura F. Landweber and Eric B. Baum, Editors, DNA Based Computers II
43 Panos Pardalos, Sanguthevar Rajasekaran, and José Rolim, Editors, Randomization Methods in Algorithm Design
42 Ding-Zhu Du and Frank K. Hwang, Editors, Advances in Switching Networks
41 David Aldous and James Propp, Editors, Microsurveys in Discrete Probability
40 Panos M. Pardalos and Dingzhu Du, Editors, Network Design: Connectivity and Facilities Location
39 Paul W. Beame and Samuel R Buss, Editors, Proof Complexity and Feasible Arithmetics
38 Rebeccna N. Wright and Peter G. Neumann, Editors, Network Threats
37 Boris Mirkin, F. R. McMorris, Fred S. Roberts, and Andrey Rzhetsky, Editors, Mathematical Hierarchies and Biology
36 Joseph G. Rosenstein, Deborah S. Franzblau, and Fred S. Roberts, Editors, Discrete Mathematics in the Schools
35 Dingzhu Du, Jun Gu, and Panos M. Pardalos, Editors, Satisfiability Problem: Theory and Applications
34 Nathaniel Dean, Editor, African Americans in Mathematics
TITLES IN THIS SERIES

33 Ravi B. Boppana and James F. Lynch, Editors, Logic and Random Structures
32 Jean-Charles Grégoire, Gerard J. Holzmann, and Doron A. Peled, Editors, The SPIN Verification System
31 Neil Immerman and Phokion G. Kolaitis, Editors, Descriptive Complexity and Finite Models
30 Sandeep N. Bhatt, Editor, Parallel Algorithms: Third DIMACS Implementation Challenge
29 Doron A. Peled, Vaughan R. Pratt, and Gerard J. Holzmann, Editors, Partial Order Methods in Verification
28 Larry Finkelstein and William M. Kantor, Editors, Groups and Computation II
27 Richard J. Lipton and Eric B. Baum, Editors, DNA Based Computers
26 David S. Johnson and Michael A. Trick, Editors, Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge
25 Gilbert Baumslag, David Epstein, Robert Gilman, Hamish Short, and Charles Sims, Editors, Geometric and Computational Perspectives on Infinite Groups
23 Panos M. Pardalos, David I. Shalloway, and Guoliang Xue, Editors, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding
22 Panos M. Pardalos, Mauricio G. C. Resende, and K. G. Ramakrishnan, Editors, Parallel Processing of Discrete Optimization Problems
21 D. Frank Hsu, Arnold L. Rosenberg, and Dominique Sotteau, Editors, Interconnection Networks and Mapping and Scheduling Parallel Computations
20 William Cook, László Lovász, and Paul Seymour, Editors, Combinatorial Optimization
19 Ingemar J. Cox, Pierre Hansen, and Bela Julesz, Editors, Partitioning Data Sets
17 Eric Sven Ristad, Editor, Language Computations
16 Panos M. Pardalos and Henry Wolkowicz, Editors, Quadratic Assignment and Related Problems
15 Nathaniel Dean and Gregory E. Shannon, Editors, Computational Support for Discrete Mathematics
14 Robert Calderbank, G. David Forney, Jr., and Nader Moayeri, Editors, Coding and Quantization: DIMACS/IEEE Workshop
13 Jin-Yi Cai, Editor, Advances in Computational Complexity Theory
12 David S. Johnson and Catherine C. McGeoch, Editors, Network Flows and Matching: First DIMACS Implementation Challenge
11 Larry Finkelstein and William M. Kantor, Editors, Groups and Computation
10 Joel Friedman, Editor, Expanding Graphs
9 William T. Trotter, Editor, Planar Graphs
8 Simon Gindikin, Editor, Mathematical Methods of Analysis of Biopolymer Sequences
7 Lyle A. McGeoch and Daniel D. Sleator, Editors, On-Line Algorithms

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
This volume is a collection of papers from the DIMACS Workshop on Signal Processing for Wireless Transmission. The workshop brought together theoreticians and practitioners working on wireless communications, information, and coding theory from a variety of perspectives. The main topics discussed in the book are capacity of multiantenna channels, vector broadcast channels and "dirty-paper" coding, signal processing, and ad hoc networking in wideband channels. These are all major themes in current research in physical-layer design for wireless communication.

The book is suitable for graduate students and researchers interested in mathematical problems of communication theory.