

An Imprint
of the

MATHEMATICAL
SOCIETY

Euler

The Master of Us All

Typesetting by Integre Technical Publishing Co., Inc.
Cover design by Freedom by Design.
Images of Euler appearing on pages xxvii, 172, and the cover courtesy of Gerald L. Alexanderson.
© 1999 by
The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 98-88271

Complete Set ISBN 0-88385-300-0
Vol. 22 ISBN 0-88385-328-0

Printed in the United States of America
Current printing (last digit):
$\begin{array}{llllll}18 & 17 & 16 & 15 & 14 & 13\end{array} 12$

NUMBER TWENTY-TWO

Euler

The Master of Us All

William Dunham
Truman Koehler Professor of Mathematics
Muhlenberg College

Published and Distributed by

THE
DOLCIANI MATHEMATICAL EXPOSITIONS

Published by
THE MATHEMATICAL ASSOCIATION OF AMERICA

Committee on Publications
JAMES W. DANIEL, Chair

Dolciani Mathematical Expositions Editorial Board
BRUCE P. PALKA, Editor
EDWARD J. BARBEAU
IRL C. BIVENS
SUSAN C. GELLER

The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical Association of America was established through a generous gift to the Association from Mary P. Dolciani, Professor of Mathematics at Hunter College of the City University of New York. In making the gift, Professor Dolciani, herself an exceptionally talented and successful expositor of mathematics, had the purpose of furthering the ideal of excellence in mathematical exposition.

The Association, for its part, was delighted to accept the gracious gesture initiating the revolving fund for this serics from one who has served the Association with distinction, both as a member of the Committee on Publications and as a member of the Board of Governors. It was with genuine pleasure that the Board chose to name the series in her honor.

The books in the series are selected for their lucid expository style and stimulating mathematical content. Typically, they contain an ample supply of exercises, many with accompanying solutions. They are intended to be sufficiently elementary for the undergraduate and even the mathematically inclined high-school student to understand and enjoy, but also to be interesting and sometimes challenging to the more advanced mathematician.

1. Mathematical Gems, Ross Honsberger
2. Mathematical Gems II, Ross Honsberger
3. Mathematical Morsels, Ross Honsberger
4. Mathematical Plums, Ross Honsberger (ed.)
5. Great Moments in Mathematics (Before 1650), Howard Eves
6. Maxima and Minima without Calculus, Ivan Niven
7. Great Moments in Mathematics (After 1650), Howard Eves
8. Map Coloring, Polyhedra, and the Four-Color Problem, David Barnette
9. Mathematical Gems III, Ross IIonsberger
10. More Mathematical Morsels, Ross Honsberger
11. Old and New Unsolved Problems in Plane Geometry and Number Theory, Victor Klee and Stan Wagon
12. Problems for Mathematicians, Young and Old, Paul R. Halmos
13. Excursions in Calculus: An Interplay of the Continuous and the Discrete, Robert M. Young
14. The Wohascum County Problem Book, George T. Gilbert, Mark Krusemeyer, and Loren C. Larson
15. Lion Hunting and Other Mathematical Pursuits: A Collection of Mathematics, Verse, and Stories by Ralph P. Boas, Jr., edited by Gerald L. Alexanderson and Dale H. Mugler
16. Linear Algebra Problem Book, Paul R. Halmos
17. From Erdos to Kiev: Problems of Olympiad Caliber, Ross Honsberger
18. Which Way Did the Bicycle Go? . . . and Other Intriguing Mathematical Mysteries, Joseph D. E. Konhauser, Dan Velleman, and Stan Wagon
19. In Pólya's Footsteps: Miscellaneous Problems and Essays, Ross Honsberger
20. Diophantus and Diophantine Equations, I. G. Bashmakova
21. Logic as Algebra, Paul Halmos and Steven Givant
22. Euler: The Master of Us All, William Dunham
23. The Beginnings and Evolution of Algebra, I. G. Bashmakova and G. S. Smirnova (Translated by Abe Shenitzer)
24. Mathematical Chestnuts from Around the World, Ross Honsberger
25. Counting on Frameworks: Mathematics to Aid the Design of Rigid Structures, Jack E. Graver
26. Mathematical Diamonds, Ross Honsberger
27. Proofs that Really Count: The Art of Combinatorial Proof, Arthur T. Benjamin and Jennifer J. Quinn
28. Mathematical Delights, Ross Honsberger

For Penny,

who has made all the difference.
.

Contents

Acknowledgments xi
Preface xv
Biographical Sketch xix

1. Euler and Number Theory 1
2. Euler and Logarithms 17
3. Euler and Infinite Series 39
4. Euler and Analytic Number Theory 61
5. Euler and Complex Variables 81
6. Euler and Algebra 103
7. Euler and Geometry 125
8. Euler and Combinatorics 149
Conclusion 171
Appendix: Euler's Opera Omnia 175
Index 181

Acknowledgments

During the 1997-98 academic year, I was privileged to hold the Donald B. Hoffman Research Fellowship at Muhlenberg College. For their part in granting me this award, I thank Muhlenberg's Faculty Development and Scholarship Committee, Dean Curtis Dretsch, and President Arthur Taylor. Without such support, I could never have begun-let alone completed-this project.

Likewise, I acknowledge the two libraries whose resources proved essential over the past year: the Trexler Library of Muhlenberg College, where this manuscript was written; and the Fairchild-Martindale Library of Lehigh University, where Euler's Opera Omnia can be found in all its glory.

Among those who encouraged this work, foremost is Don Albers, Director of Publications and Programs of the Mathematical Association of America. Don has been a constant source of good advice and good cheer. For his professionalism and his friendship, I shall always be grateful.

Others made significant contributions, most notably Bruce Palka, who edits the Dolciani Mathematical Expositions; Elaine Pedreira and Beverly Ruedi, who shepherded the manuscript through production; and Jerry Alexanderson and Leon Varjian, whose careful reading of the document generated a number of helpful comments.

I also wish to express my appreciation to friends and colleagues in Muhlenberg's Department of Mathematical Sciences: George Benjamin, Roland Dedekind, Margaret Dodson, Linda Luckenbill, John Meyer, David Nelson, Bob Stump, and Bob Wagner.

Beyond the Muhlenberg campus are individuals deserving special mention. One is George Poe, Professor of French at the University of the South, a dear friend without whose translations I would have committed one faux pas after another. Likewise, I thank Claramae and Carol Dunham and Ruth and Bob Evans, all of whom have been steadfast in their support. And there are our sons Brendan and Shannon, who remain the greatest.

Finally, and most sincerely, I wish to recognize my wife and colleague Penny Dunham, who made numerous improvements to the final manuscript and who applied her computer wizardry to generate the figures contained herein. For such assistance--and for so much more-I dedicate this book to her with love and thanks.
W. Dunham

Allentown, Pennsylvania
"Read Euler, read Euler. He is the master of us all." -Laplace
.

Preface

In the crypt beneath St. Paul's Cathedral lies the tomb of Christopher Wren, architect of that great and beautiful building. The accompanying inscription ranks among the most famous of epitaphs:

Lector, si monumentum requiris, circumspice.
This translates as, "Visitor, if you seek his monument, look around." Indeed, an architect could have no finer memorial than the huge church soaring overhead. From nave to dome, from transepts to choir, St. Paul's is Wren's masterpiece.

Mathematics lacks the tactile solidity of architecture. It is intangible, existing not in stone and mortar but in the human imagination. Yet, like architecture, it is real. And, like architecture, it has its masters.

This book is about one of the undisputed geniuses of mathematics, Leonhard Euler. His insight was breathtaking, his vision profound, his influence as significant as that of anyone in history. Euler contributed to long-established branches of mathematics like number theory, analysis, algebra, and geometry. He also ventured into the largely unexplored territory of analytic number theory, graph theory, and differential geometry. In addition, he was his century's foremost applied mathematician, as his work in mechanics, optics, and acoustics amply demonstrates. There was hardly an aspect of the subject that escaped Euler's penetrating gaze. As the twentieth-century mathematician André Weil put it, "All his life... he seems to have carried in his head the whole of the mathematics of his day, both pure and applied."

If the quality of his achievement was extraordinary, so too was its sheer quantity. At present, 73 volumes of the Opera Omnia (his collected works) are in print-a publishing project that began in 1911-and many volumes of scientific correspondence and other manuscripts are yet to appear. Euler was

[^0]a veritable Niagara, one who wrote mathematics faster than most people can absorb it.

As an expositor, Euler has no peers. He produced classic texts in algebra, differential and integral calculus, and the calculus of variations-works that continue to shape the nature of their subjects down to the present day. Further, his writing was fresh and enthusiastic, in contrast to the modern tendency of obscuring a scholar's passion behind the façade of detached, technical prose. Euler was clearly having fun, pursuing the game for its own enjoyment, and exhibiting a pervasive confidence that his quest would be successful.

In beholding such productivity, one is apt to be humble. In all honesty, one is apt to be overwhelmed. No author can do justice to the tens of thousands of pages Euler penned over six decades of his career, and it is hard not to feel both inadequate and foolhardy even to consider an undertaking such as this.

Yet his achievements deserve a look. For all the mathematicians who revere Euler's name, relatively few have picked up a volume of the Opera Omnia and plunged in. On the contrary, it is the custom of modern mathematicians to learn the subject from textbooks rather than from original sources. Because of changes in notation and emphasis that occur over time, not to mention real advances that can render a prior discussion obsolete, this is not an inherently bad idea.

But something is lost if we deal only in substitutes, only in proxies. Original mathematics, even if centuries old, can be as stirring as the theorems proved last week. This is especially true of Euler's work, as Raymond Ayoub so cogently observed when he wrote:

Reading his papers is an exhilarating experience; one is struck by the great imagination and originality. Sometimes a result familiar to the reader will take on an original and illuminating aspect, and one wishes that later writers had not tampered with it. ${ }^{2}$

No student of literature would be satisfied with a mere synopsis of Hamlet. In like fashion, no mathematician should go through a career without meeting Euler face to face. To do otherwise suggests not only an indifference about the past but also, in some fundamental way, a genuine selfishness.

My ground rules for this book are simple: I focus each chapter upon a subject to which Euler made a significant contribution. Chapters begin with a discussion of what was known prior to Euler; this provides an opportunity to

[^1]introduce such predecessors as Euclid, Heron, Briggs, and Bernoulli-giants upon whose shoulders Euler would stand. I next examine an Eulerian "great theorem" that pushed the frontiers as only he could. In so doing, I pledge to be as faithful as possible in explaining his original line of attack. Each chapter concludes with an epilogue, either discussing Euler's subsequent work on the topic or describing how later mathematicians further developed his ideas.

As a consequence, this book meanders through number theory, analysis, complex variables, algebra, geometry, and combinatorics-these being but a few of the areas in which Euler made an impact. Selections of theoremsindeed, selections of the areas themselves-are my own. Moreover, because Euler was a master at devising multiple proofs of the same result, one must choose among equally intriguing routes to the same end. Fifty different authors operating under the same ground rules would come up with fifty different books (and I'd be interested to read the other forty-nine). But this one is mine.

What mathematical prerequisites are necessary for the chapters ahead? On the one hand, this volume is not aimed at the rank beginner. Readers should be familiar with such concepts as "integration by parts" or "prime numbers" or "geometric series." I imagine that a few college math courses would provide more than sufficient background for everything I cover.

On the other hand, the book certainly does not assume a graduate school mastery of any branch of mathematics. In a very real sense, that would defeat my purpose. I hope I have made the material accessible to the widest possible audience of "mathematically literate" readers so that it is, in the best sense of the term, expository.

As I begin, I make both an observation and a request.
The observation is that Euler was far from infallible. He operated in an era whose standards of mathematical rigor were far more primitive than those of today. As we shall see, some of his arguments were questionable, and others were simply wrong. After all, it was Euler who, without hesitation, introduced expressions like

$$
1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots=0.63518+\frac{1}{2} \ln (\infty)^{3}
$$

or

$$
\frac{1-x^{0}}{0}=-\ln x .^{4}
$$

[^2]The modern reader may dismiss these with a knowing smirk, but one dare not laugh too quickly. Because both the left and right sides of the first equation are infinite, it is not really incorrect (even if the 0.66215 on the right seems absurdly superfluous). And the second equation, if slightly modified to read " $\lim _{t \rightarrow 0^{+}}\left(1-x^{t}\right) / t=-\ln x$ for $x>0$," makes perfect sense. Here, as often happens with Euler's "mistakes," we come to realize that, though this be mathematical madness, yet there is method in it.

I also make my request, namely that irate readers not complain about the omission of their favorite Eulerian theorem. At the outset, I plead guilty to such charges, for I have omitted virtually all of Euler's work. This book represents just the tip of the mathematical iceberg or, perhaps more appropriately, of the mathematical glacier.

At best, I hope to share my personal enthusiasm for a tiny fragment of Euler's remarkable vision. In spite of the passage of centuries, his contributions remain of the highest order, and his impact upon mathematics is everywhere evident. No matter their speciality, mathematicians of today may truly say of Euler what was once said of Wren:
"If you seek his monument, look around."

Biographical Sketch

Euler's life fits snugly within the eighteenth century. Born in the spring of 1707, he lived 76 years until the autumn of 1783 . This makes him the close contemporary of another quintessential citizen of that century, Benjamin Franklin (1706-1790). Although of different temperaments, different interests, and even different hemispheres, both Franklin and Euler were widely esteemed in their own day, and both had a profound impact upon the course of Western civilization.

Although focusing primarily on Euler's mathematics, this book should also provide at least a quick survey of his life. In one sense, that life was not especially exciting. Euler was a fairly conventional person, by all accounts kind and generous, but one who lacked the flair of some of his century's better known figures. Unlike Washington (1732-1799), he did not command armies to victory; unlike Robespierre (1758-1794), he did not lead-or succumb to-a political revolution; unlike Captain Cook (1728-1779), he did not sail the seas to explore unknown continents.

Yet in another sense, Euler was a great adventurer. His adventures, of course, were of the intellectual sort, carrying him not across the physical world but through a wonderful mathematical landscape. Exploration, after all, can take many forms.

Leonhard Euler was born near Basel, Switzerland. His father was a Protestant clergyman of modest means who entertained the hope that Leonhard would follow him into the pulpit. His mother also came from a pastoral family, so the deck seemed stacked: young Euler appeared destined for the ministry.

He was a precocious youth, blessed with a gift for languages and an extraordinary memory. Euler eventually carried in his head an assortment of curious information, including orations, poems, and lists of prime powers. He also was a fabulous mental calculator, able to perform intricate arithmetical computations without benefit of pencil and paper. These uncommon talents would serve him well later in life.

After entering the University of Basel at age 14, Leonhard encountered its most famous professor, Johann Bernoulli (1667-1748). Two facts about Bernoulli should be noted. First, he was a proud and arrogant man, as quick to demean the work of others as to praise that of himself. Second, any such praise was probably deserved. In 1721, Johann Bernoulli could claim to be the world's greatest active mathematician (Leibniz had died a few years before, and the aged Newton had long since abandoned mathematics). It was only by chance that he found himself in Basel, a small city that was hardly the intellectual capital of the world. Yet there he was when Euler needed a mentor.

Not Euler's teacher in a modern sense of the term, Bernoulli instead became a guide for the young scholar, suggesting mathematical readings and making himself available to discuss those points that seemed especially difficult. As Euler recalled years later,

I was given permission to visit [Johann Bernoulli] freely every Saturday afternoon and he kindly explained to me everything I could not understand. ${ }^{1}$

Euler asserted that this loose tutorial arrangement was "undoubtedly... the best method to succeed in mathematical subjects," and crusty Johann Bernoulli came to realize that his young tutee was something special. As the years passed and their relationship matured, it was Bernoulli who more and more seemed to become the pupil. Johann, a man not easily given to compliments, once wrote to Euler these generous lines:

I present higher analysis as it was in its childhood, but you are bringing it to man's estate. ${ }^{?}$

At university, Euler's education was not limited to mathematics. He spoke on the subject of temperance, wrote on the history of law, and eventually completed a master's degree in philosophy. Then, fulfilling his apparent destiny, Euler entered divinity school to study for the ministry.

But the call of mathematics was too strong. He later remembered:
I had to register in the faculty of theology, and I was to apply myself
... to the Greek and Hebrew languages, but not much progress was

[^3]

Euler on Swiss currency
made, for I turned most of my time to mathematical studies, and by my happy fortune the Saturday visits to Johann Bernoulli continued. ${ }^{3}$

He left the ministry to others-Euler would become a mathematician.
His progress was rapid. At age 20, he earned recognition in an international scientific competition for his analysis of the placement of masts on a sailing ship. This was remarkable for one so young and so landlocked (after all, Euler had spent his entire life in Switzerland). It was the harbinger of successes to come.

Then, as now, it did not hurt to have friends in high places. In 1725, Johann's son Daniel Bernoulli (1700-1782) arrived in Russia to assume a position in mathematics at the new St. Petersburg Academy, and the next year Euler was invited to join him. The only opening at the time was in physiology/medicine, but jobs were scarce, so Euler accepted the offer. Knowing nothing of the medical arts, he set about learning the subject in characteristically industrious fashion-albeit from a somewhat geometrical point of view.

Upon his 1727 arrival in St. Petersburg, Euler learned that he had been reassigned to physics rather than physiology-surely a fortuitous development not only for him but also for those patients whom he might have operated upon with compass and straightedge. During the early years in Russia, Euler resided at the home of Daniel Bernoulli, and the two engaged in extended discussions of physics and mathematics that to some extent previewed the course of European science over the coming decades.

[^4]In 1733, Daniel Bernoulli left for an academic post in Switzerland. On the one hand, the departure of his good friend left a hole in Euler's life. On the other, it opened up the chair in mathematics, which Euler soon occupied.

With such professional advancement, Euler found himself comfortably situated, and soon thereafter he married. His wife was Katharina Gsell (?1773), daughter of a Swiss painter living in Russia. Over four decades of their happy and productive marriage, the Eulers had 13 children. Unfortunately, as was common at the time, only five survived to adolescence, and only three outlived their parents.

Intellectual life at the St. Petersburg Academy suited Euler perfectly. He devoted a vast amount of effort to research but was constantly at the disposal of the state-which, after all, paid his salary. Time and again he found himself as a scientific consultant to the government, in which capacity he prepared maps, advised the Russian navy, and even tested designs for fire engines. However, he drew the line when asked to cast a horoscope for the young Czar, a job he quickly passed to another.

Meanwhile his fame was growing. One of his earliest triumphs was a solution of the so-called "Basel Problem" that had perplexed mathematicians for the better part of the previous century. The issue was to determine the exact value of the infinite series

$$
1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots+\frac{1}{k^{2}}+\cdots
$$

Numerical approximations had revealed that the series sums to a number somewhere in the vicinity of $8 / 5$, but the exact answer eluded a string of mathematicians ranging from Pietro Mengoli (1625-1686), who posed the problem in 1644, through Jakob Bernoulli (1654-1705)—Johann's brother and Daniel's uncle-who brought it to the attention of the broader mathematical community in 1689. Well into the next century the problem remained unsolved, and anyone capable of summing the series was certain to make a major splash.

When it happened in 1735, the splash was Euler's. ${ }^{4}$ The answer was not only a mathematical tour de force but a genuine surprise, for the series sums to $\pi^{2} / 6$. This highly non-intuitive result made the solution all the more spectacular and its solver all the more famous. (Euler's reasoning is described in Chapter 3 of this book).

[^5]With the Basel problem behind him and the promise of good things ahead, Euler pursued his research at a breathtaking pace. Paper after paper flowed from his pen into the journal of the St. Petersburg Academy, so that for some issues half the articles in the publication were his. He seemed to be living in a mathematician's paradise.

But three problems darkened this period. First was the political turmoil that swirled across Russia in the aftermath of the unexpected death of Catherine I. Her absence left a leadership vacuum that, in conjunction with the suspicions and intrigues of the day, had dangerous consequences. Among these were an intolerance of dissent and a growing suspicion of foreigners. The fact that the Academy was staffed almost exclusively by non-Russians led Euler to describe his situation as "rather awkward." 5

Second, the Academy was run by a pompous bureaucrat named Johann Schumacher. In the words of Clifford Truesdell, Schumacher's primary occupation lay "in the suppression of talent wherever it might rear its inconvenient head." ${ }^{\prime 6}$ Although Euler was diplomatic in dealing with his boss, he surely could not have been comfortable working under a martinet with such undeserved selfimportance.

The final problem was physical: the deterioration of Euler's eyesight. As early as 1738 he experienced a loss of vision in his right eye. Euler attributed this to overwork, particularly to his intense efforts at cartography, but modern medical opinion suggests it more likely was the result of a severe infection he had recently suffered.

The impact of his visual decline was-in terms of Euler's mathematicsnil. Visual impairment or no, Euler continued his program of research. He wrote about ship-building, acoustics, and the theory of musical harmony. With the encouragement of his friend Christian Goldbach (1690-1764), Euler made seminal discoveries in classical number theory (see Chapter 1) and pushed into the uncharted waters of analytic number theory (see Chapter 4). In response to a letter from Philippe Naudé (1684-1745), he lay the groundwork for the theory of partitions (Chapter 8). And it was during this period that he wrote his text, Mechanica, which presented the Newtonian laws of motion within a framework of calculus. For this, the Mechanica has been called "a landmark in the history of physics." ${ }^{7}$

[^6]With such an output came a matching reputation, which in turn generated an offer from Prussia's Frederick the Great (1712-1786) to become a member of the newly revitalized Berlin Academy. Because of the uneasy political situation in Russia, which Euler described as "a country where every person who speaks is hanged," the offer looked appealing. ${ }^{8}$ Thus in 1741 Leonhard, Katharina, and family made the move to Germany.

Berlin was home for a quarter of a century, the middle phase of Euler's mathematical career. During this time he published two of his greatest worksa 1748 text on functions, the Introductio in analysin infinitorum (discussed in Chapter 2), and a 1755 volume on differential calculus, the Institutiones calculi differentialis. This period also saw him investigate complex numbers and discover "Euler's identity"- $e^{i \theta}=\cos \theta+i \sin \theta$ (see Chapter 5)-as well as offer a proof of the fundamental theorem of algebra (which we treat in Chapter 6).

While in Berlin, Euler was asked to provide instruction in elementary science to the Princess of Anhalt Dessau. The result was a multi-volume masterpiece of exposition, subsequently published as Letters of Euler on Different Subjects in Natural Philosophy Addressed to a German Princess. ${ }^{9}$ This compilation of over 200 "letters" introduced subjects as diverse as light, sound, gravity, logic, language, magnetism, and astronomy. In the course of the work, Euler explained why it is cold atop a high mountain in the tropics, why the moon looks larger when it rises, and why the sky is blue. He ranged further afield when he discussed the origin of evil, the conversion of sinners, and the intriguing topic of "Electrization of Men and Animals."

Writing about vision in a "letter" dated August 1760, Euler began with these words: "I am now enabled to explain the phenomena of vision, which is undoubtedly one of the greatest operations of nature that the human mind can contemplate., ${ }^{10}$ The poignancy of this remark, coming as it did from a partially_and soon to be totally-blind author, is striking. But Euler was not one to let personal misfortune interfere with his attitude toward the wonders of Nature.

Letters to a German Princess became an international hit. The work was translated into a host of languages across Europe and eventually published (in

[^7]1833) in the United States. In the preface to the American edition, the publisher gushed over Euler's expository skill in guaranteeing that
the delight of the reader is, at every step, commensurate with her improvement, and each succeeding acquisition of knowledge becomes a source of still increasing gratification. ${ }^{11}$

In the end, this was Euler's most widely read book. It is not always the case that a scholar working at the very frontier of research can step back to write a treatise accessible to the layman, but this Euler surely did. Letters to a German Princess remains to this day one of history's finest examples of popular science. ${ }^{12}$

In spite of the fact that Euler had deserted his colleagues in Russia, they bore him no ill will. From Germany he continued to edit the St. Petersburg journal, to publish article after article in its pages, and to receive a regular stipend from his old employer. Such cordiality continued even through the Seven Years' War, which saw Russian troops invade Berlin. A friendly relationship with St. Petersburg would prove significant in the years to come.

Beyond his mathematical research, Euler was deeply involved in administrative duties at the Berlin Academy. Although not officially the Academy's director, he informally played that role. In the process, he assumed a peculiar array of responsibilities, from juggling budgets to overseeing greenhouses.

But all was not well in Berlin, for Frederick the Great had developed an inexplicable contempt for his most famous scholar-in-residence. The animosity seems to have stemmed as much from a personality conflict as anything. Frederick regarded himself as an erudite, witty savant. He loved philosophy, poetry, and anything French. In fact, affairs at the Academy were conducted in French, not German. To the King, Euler was something of a bumpkin-a brilliant bumpkin to be sure, but a bumpkin all the same. Conventional in his tastes, Euler was a hard-working family man and a devout Protestant. "As long as he preserved his sight," we are told,
he assembled the whole of his family every evening, and read a chapter of the Bible, which he accompanied with an exhortation. Theology was one of his favourite studies, and the doctrines which he held were the most rigid doctrines of Calvinism. ${ }^{13}$

[^8]Here was someone of a different breed than the glittering sophisticates at the Berlin Academy. Before long, Frederick took to calling him "my cyclops," a cruel reference to Euler's limited vision.

Making matters worse was the frosty relationship that developed between Euler and the Academy's other superstar, Voltaire (1694-1778). At least for a time, Voltaire enjoyed several advantages in the circle of Frederick the Greathe was celebrated as an author and satirist; he was as sophisticated as the King; and he was thoroughly French. Euler was not spared Voltaire's caustic wit. The latter characterized him as one who "never learnt philosophy" and thus had to satisfy himself "with the fame of being the mathematician who in a given time has filled more sheets of paper with calculations than any other." ${ }^{14}$

Thus, despite bringing to the Berlin Academy a mathematical glory it would never again achieve, Euler was forced out. Matters in Russia had improved during his absence, particularly with the installation of Catherine the Great (1729-1796), so Euler was only too happy to return. The St. Petersburg Academy must have barely believed its good fortune when, in 1766, it welcomed back the greatest mathematician in the world. This time, Euler would stay for good.

Although his scientific life proceeded apace, the next few years brought two personal tragedies. First, he suffered the failure of his remaining good eye. By 1771 Euler was virtually blind. This left him without the ability to write or read anything other than very large characters. Then, late in 1773, Katharina died. Coupled with his recent blindness, this loss could well have marked the end of Euler's productive years.

Euler, however, was no ordinary man. Although unable to see, he not only maintained but even increased his scientific output. In the year 1775, for instance, he wrote an average of one mathematical paper per week. Such productivity came in spite of the fact that he now had to have others read him the contents of scientific papers, and he in turn had to dictate his work to diligent scribes. During this descent into blindness, he wrote an influential textbook on algebra, a 775-page treatise on the motion of the moon, and a massive, three-volume development of integral calculus, the Institutiones calculi integralis. Never was his remarkable memory more useful than when he could see mathematics only in his mind's eye.

That this blind and aging man forged ahead with such gusto is a remarkable lesson, a tale for the ages. Euler's courage, determination, and utter unwilling-

[^9]

Portrait of the mature Euler
ness to be beaten serves, in the truest sense of the word, as an inspiration for mathematician and non-mathematician alike. The long history of mathematics provides no finer example of the triumph of the human spirit.

Three years after his wife's death Euler married her half sister, thereby finding a companion with whom to share his last years. These stretched until September 18, 1783. On that day, Euler spent time with his grandchildren and then took up mathematical questions associated with the flight of balloons. This was a topic of interest due to the Montgolfier brothers' recent ascent above Paris in a hot-air balloon-an event witnessed, incidentally, by a diplomat of the new American nation, Benjamin Franklin. ${ }^{15}$

After lunch Euler made some calculations on the orbit of the planet Uranus. Undoubtedly he would have found the behavior of Uranus a rich source of new

[^10]problems. In the decades to come, the planet's peculiar orbit, analyzed in light of equations that Euler had refined, led astronomers to search for-and to discover-the even more distant planet Neptune. Had Euler the time, he would have enjoyed the challenge of seeking a new planet mathematically.

But Euler was not to have such an opportunity. In the late afternoon of that typically busy September day, he was struck down by a massive hemorrhage that caused his immediate death. Mourned by his family, by his colleagues at the Academy, and by the world's scientific community, Leonhard Euler was laid to rest in St. Petersburg. Only then did this great engine of mathematics fall silent.

Euler left behind a legacy of epic proportions. So prolific was he that the journal of the St. Petersburg Academy was still publishing the backlog of his papers a full 48 years after his death. There is hardly a branch of mathematicsor for that matter of physics-in which he did not play a significant role.

In his eulogy, the Marquis de Condorcet observed that whosoever pursues mathematics in the future will be "guided and sustained by the genius of Euler" and asserted, with much justification, that "all mathematicians ... are his disciples." ${ }^{16}$

In the eight chapters that follow, sustained by this genius, we shall examine a tiny fraction of Euler's output. It is only a sampler. But, heeding the advice of Laplace, we shall be reading the work of a master.

[^11]
Index

Abel, Niels, 119-120, 124
Adnotationes ad calculum integrale Euleri, 36
Algebra:
abstract, 120
Euler's definition, 103
fundamental theorem of, xxiv, 104, 108-121, 123-124, 176
Al-Khowârizmî, Muhammad ibn-Musa, 103
Al-Qifti, 126
Altitude, 126, 134, 136-137, 143, 147
Analytic Art, The, 103
Analytic number theory, 61, 65, 74, 78-79
Angle:
bisectors, 128, 131, 147
trisectors, 147-148
Antiderivative, 95, 110-111
Apéry, Roger, 60
Apollonius, 125-126
Arago, François, 54
Archimedean point, 126
Archimedes, 125-127, 133
Argand, Jean-Robert, 121
Aristotle, 126
Arithmetica Universalis, 49
Ars Conjectandi, 150, 154
Ars Magna, 85, 104
Ayoub, Raymond, xvi

Basel problem, xxii, 39, 42, 46, 48, 55
Basel, University of, xx
Bell, Eric Temple, 16
Berlin Academy, xxiv-xxvi
Bernoulli, Daniel, xxi-xxii, 4, 55
Bernoulli, Jakob, xxii, 30-31, 37, $39-43,45,48,60,150-154$
Bernoulli, Johann, xx-xxii, 49, 98-101
Bernoulli, Nicolaus, 109, 155, 180
Bernoulli numbers, 54
Bessel functions, 156
Bhaskara, 149, 152
Bombelli, Rafael, 85-87, 103
Bovillus, Carolus, 5-6
Boyer, Carl, 17-18
Brianchon, C. J., 147
Briggs, Henry, xvii, 19-20, 23, 28

Cajori, Florian, 146
Calculus, xxiii, 6, 17, 61, 154, 169
differential, xxiv, 28-29, 50-51, 99-100, 122, 177
integral, xxvi, 21-23, 33-35, 43-45, $55-56,95,109-110,177-178$
Calculus of variations, 171,178
Cardano, Girolamo, 84-85, 103-104
Cardano's formula, 84-86, 90-91, 106
Carnot, Lazare N.M., 142
Catherine I of Russia, xxiii
Catherine the Great, xxvi

Cauchy, Augustin-Louis, 102, 121
Center of gravity, see Centroid
Centroid, 126-127, 133-134, 136-138, 140, 148
Chasles, Michel, 142
Chebyshev, Pafnuty, 79
Circumcenter, 127, 133-134, 137-138, 140,148
Circumscribed circle, 127, 147
Clairaut, Alexis-Claude, 180
Combinations, 151-153, 155
Combinatorial topology, 171
Combinatorics, 149-150, 154-155, 161, 169, 177
Comparison test (for series convergence), 42-43
Completeness property of the real numbers, 34
Complex number, see Number, complex
Complex plane, 121
Condorcet, Marquis de, xxviii
Continued fractions, 177
Cook, Captain James, xix
Cuive, 17

D'Alembert, Jean, 109, 111, 180
Del Ferro, Scipione, 83, 103-104
De Moivre, Abraham, 88, 91, 155
De Moivre's theorem, 88-89, 92-93,96
De numeris amicabilibus, 7
Derangement, 156-160, 165, 167-168
probability of, 168-169
Descartes, René, 6, 81, 87, 103-104, 141-142
Dialogues Concerning Two New Sciences, 173
Differential, 28-29
Differential equations, 171, 178
Dirichlet, P. G. Lejeune, 78-79
Distance formula, 133
Doctrine of Chances, The, 155
$e, 26,35,96,169$
Edwards, Harold, 7
Elastic bodies, 176, 178

Elements, 1-3, 18, 62, 103, 126, 128. See also Euclid
Elements of Algebra, 83, 86, 103-104, 177
Eneström, Gustaf, 175
Equation(s)
cubic, 82-86, 100, 104, 106-107
linear, 103
polynomial, 104, 108. See also Factorization
quadratic, $81,83,100,103,107$. See also Quadratic formula
quartic, 104-107
quintic, 107, 119-120
solution by radicals, $83-84,119-120$
Euclid, xvii, 1-6, 8-9, 11-12, 16, 18, $62-63,70,103,125-126,128$, 133, 141, 148. See also Elements
Euler, Katharina (Gsell), xxii, xxiv, xxvi
Euler, Leonhard
correspondence, $\mathrm{xx}, \mathrm{xxiii}, 4,7,55$, $101,109,1 i 1,162,165,176,180$
life in Germany, xxiv-xxvi
life in Russia, xxi-xxiv, xxvi-xxviii
life in Switzerland, xix-xxi
mathematical works, 175-180
Euler's constant (γ), 33-37
Euler-Descartes formula, 171
Euler's identity, xxiv, 93-96
Euler line, 125, 133, 141-142, 145-148
Euler-Mascheroni constant, see Euler's constant
Everest, Mount, 142

Factorization (of polynomials), 108-112, 115-118, 121
Fermat, Pierre de, 7, 64, 65
Ferrari, Ludovico, 104
Feuerbach, Karl Wilhelm, 147
Feuerbach circle, 146-147
Fourier series, 156
Franklin, Benjamin, xix, xxvii
Frederick the Great, xxiv-xxvi, 180
Function, 17-18
analytic, 122
bounded, 122
complex, 122-124
entire, 122-123
exponential, 18, 23-24
gamma, 35, 171
logarithmic, 18, 23-24, 79. See also
Logarithm
polynomial, 18
trigonometric, 18
zeta, 54

Galileo, 173
Gauss. Carl Friedrich, 36, 79, 102, 120-121, 124, 176
Géométrie, 81, 103
Geometry
analytic, 61, 125, 133, 142-143
Greek, 125-126, 130, 146-147
Non-Euclidean, 125, 146
projective, 146
synthetic, 125, 141, 143
Georgonne point, 146
Goldbach, Christian, xxiii, 7, 101, 109, 111
Graph theory, 171
Gregory, James, 20, 28
Gregory of St. Vincent, 21
Guy, Richard, 13
Hadamard, Jacques, 79, 92
Hald, Anders, 155
Hamlet, xvi
Heron, xvii, 126, 130-132, 143, 148
formula for triangular area, 125-126, 129-133, 138, 141-145
Hobson, E.W., 18
Homer, 126
$i(=\sqrt{-1}), 88,96$
Incenter, 128-129, 131, 143, 147
Infinite product, 47-49, 58, 163-166
Infinite series, see Series
Infinitesimal, 29. See also Numbers, infinitely small
Inradius, 129

Inscribed circle, 128, 130-131, 144-145
Institutiones calculi differentialis, xxiv, 28
Institutiones calculi integralis, xxvi
Integration by parts, 44, 56
Intermediate value theorem, 83, 114-115, 118
Introductio in analysin infinitorum, xxiv, $17-18,23,28,31,48,88,92$, 103, 111, 162, 165, 176-177
Inverse sine, 55-56, 95
Inverse tangent, 110

Klee, Victor, 1
Kline, Morris, 142
Königsberg Bridge problem, 171
Kronecker, Leopold, 70
Lagrange, Joseph, 180
Lamb, Horace, 172
Laplace, Pierre-Simon de, xiii, xxvii, 18
Law of cosines, 134, 138
Law of large numbers, 150
Legendre, Adrien-Marie, 79
Leibniz, Gotffried Wilhelm, 31, 42, 86-87, 98-99, 101, 109
Letters to a German Princess, xxiv-xxv, 176, 179
Levi ben Gerson, 150, 152
L'Hôpital's Rule, 44
Liouville, Joseph, 122-124
Liouville's theorem, 122-124
Littlewood, J. E., 63
Lobachevsky, Nikolai, 125
Logarithm(s), 18-24, 32-33, 53, 57-59
of complex numbers, 98-101, 122
"Golden rule," 24, 28
hyperbolic, see Logarithm, natural
natural $(\ln x), 22,26,28-29,110,169$
of negative numbers, 99-100
tables, 19-20, 27-28
Maasei Hoshev, 150
Mascheroni, Lorenzo, 36

Mathematical induction, 150
Maupertuis, P. L. M. de, 180
Mechanica, xxiii
Median, 126-127, 1.36
Mengoli, Pietro, xxii, 42
Mercator, Nicholas, 20, 22-23, 27
Mersenne, Marin, 4, 6
Mersenne prime, 4-5, 12
Michelangelo, 12
Modulus, 121
Monge, Gaspard, 142
Montgolfier brothers, xxvii
Montmort, Pierre de, 155-156
Morley, Frank, 147-148
Morley`s theorem, 147-148
Multiplication principle, 150-151, 158
Multiplicative property, 9

Nagel point, 146
Napier, John, 19, 23
Napoleon's theorem, 146
Naudé, Philippe, xxiii, 162, 165
Neptune, xxviii
Newton, Isaac, 20-23, 27, 49, 104
Newton's formulas, 49-50
Nichomachus, 2
Nicolai, F. B. G., 36
Nine-point circle, 147. See also Feuerbach circle
Niven, Ivan, 74-75
Number(s)
amicable, 7-8
complex, 81-82, 85-92, 95-98, $100-102,104,108,118,120-124$, 154
even-times odd, 2
imaginary, see Number, complex
infinitely large, 25-27, 37, 46, 93-94
infinitely small, 24-26, 37, 46, 93-94
perfect, $2-16,36$
relatively prime, 8
square-free, 75-76
triangular, 39

On the Equilibrium of Planes, 127
Opera Omnia, xv-xvi, 125, 171, 175-180
Orthocenter, 126, 133-135, 138, 140, 148

Partial fractions, 110
Partitions, 149, 161-165, 167
Permutations, 150-152, 156-158
Perpendicular bisector, 127, 137
Phidias, 12
$\operatorname{Pi}(\pi), 35,46,48,96$
Plato, 126
Poncelet, Jean-Victor, 143, 147-148
Postulates, 126
Prime(s), 2-11, 13-15, 63-65, 76-78
infinitude of, 62,70
series of reciprocals, $70-76$
Prime number theorem, 78-79
Ptolemy, 126
Pythagoreans, 2

Quadratic formula, 83, 87, 112, 119

Recherches sur les racines imaginaires
des équation, 89, 111
Recursion, 155, 160
Rencontre (coincidence), 155
Riemann, 79, 102, 121
Robespierre, xix
Robins, Benjamin, 178
Romeo and Juliet, 142
Roots
of complex numbers, 88-91, 102
of unity, 87-90, 108
Rudio, Ferdinand, 175
Russell, Bertrand, 173

St. Paul's Cathedral, xv
St. Petersburg Academy, xxi-xxiii, xxv-xxvi, xxviii, 7, 155, 175
Sarasa, Alfonso de, 21
Schumacher, Johann, xxiii
Semiperimeter, 129-132, 143-145

Series
cosine, 92-93. 96-97
exponential, 25-26, 76, 169
generalized binomial, 20-22, 25-26, 55. 92
geometric, finite, 3, 14, 31
geometric, infinite, 14, 39, 41, 44-45, 53. 16.3
harmonic, 15, 29-35, 37. 39. 42. 67-71, 74, 76
inverse sine, 55-56
logarithmic, 26-28, 31-32, 37, 43-44, 58, 71, 99
p-series, 41-42, 54, 59-60)
sine, 45, 92-93, 96-97
telescoping, 40, 42, 66
Shakespeare, William, 12, 61, 79, 142
Solution by radicals, see Fquation(s)
Sophocles, 12
Steiner, Jakob, 142
Study. Edward, 142
Swiss Academy of Sciences, 175
Sylvester, J. J., 13-16

Tractatus de seriebus infinitis, 30.
39-40. 42
Treize, 155
Triangle(s), 126-141, 143-148
equilateral, 141, 148

Trigonometric substitution, 95, 110
Trigonometry, 143-144
Truesdell, Clifford, xxiii, 11, 176, 178

Unicornus, 6
Unique factorization, 3
Uranus, xxvii
Vallée Poussin, C. J. de la. 79
Variae demonstrationes geometriae, 130
Variae observationes circa series infinitas, 65
Venn diagram, 156
Viète, François, 103
Voltaire. xxvi
Von Soldner, J. G., 36

Wagon, Stan, 1
Wallis's formula, 48-49
Washington, George, xix
Weierstrass. Karl, 102, 121
Weil. André, xv, 49, 74, 171
Wells, David, 141
Wessel, Caspar, 121
Wren, Christopher, xv, xviii
Wyman. Bostwick, 177
Wyman, Myra. 177
.
.
.
.

AMS / MAA

Praise for Euler, The Master of Us All....

Mathematician William Dunham has written a superb book about the life and amazing achievements of one of the greatest mathematicians of all time. Unlike earlier writings about Euler, Professor Dunham gives crystal clear accounts of how Euler ingeniously proved his most significant results, and how later experts have stood on Euler's broad shoulders. Such a book has long been overdue. It will not need to be done again for a long long time.

William Dunham has done it again! In"Euler: The Master of Us All", he has produced a masterful portrait of one of the most fertile mathematicians of all time. With Dunham's beautiful clarity and wit, we can follow with amazement Euler's strokes of genius which laid the groundwork for most of the mathematics we have today.

Ron Graham,
Chief Scientist, AT\&T.

> Martin Gardner

Euler, The Master of Us All

Without question, Leonhard Euler (1707-1783) ranks among history's greatest mathematicians. Across six decades of unmatched productivity, and despite a visual impairment that grew ever worse, he charted the course of mathematics throughout the eighteenth century and beyond. His reputation is captured in Laplace's famous admonition, "Read Euler, read Euler. He is the master of us all."

Written for the mathematically literate reader, this book provides a glimpse of Euler in action. Following an introductory biographical sketch are chapters describing his contributions to eight different topics-number theory, logarithms, infinite series, analytic number theory, complex variables, algebra, geometry, and combinatorics. At the end of the book is a brief outline of Euler's collected works, the monumental Opera Omnia, whose publication has consumed virtually all of the twentieth century.

Euler: The Master of Us All samples the work of a mathematician whose influence, industry, and ingenuity are of the very highest order.

William Dunham is the Truman Koehler Professor of Mathematics at Muhlenberg College in Allentown, Pennsylvania. He has won two awards for excellence in expository writing from The Mathematical Association of America: the 1993 George Pólya Award, and in 1997, the Trevor Evans Award. His books Journey Through Genius: The Great Theorems of Mathematics, and The Mathematical Universe have both been selections of the Book-of-the-Month Club and the History Book Club. He has also been the recipient of several grants from the National Endowment for the Humanities to fund seminars on the great theorems of mathematics in historical context.

[^0]: ${ }^{1}$ André Weil, Number Theory: An Approach through History, Birkhäuser, Boston, 1984, p. 284.

[^1]: ${ }^{2}$ Raymond Ayoub, "Euler and the Zeta Function," The American Mathematical Monthly, Vol. 81, No. 10, 1974, p. 1069.

[^2]: ${ }^{3}$ Euler, Opera Omnia, Ser. 1, Vol. 14, p. 120.
 ${ }^{4}$ Ibid., p. 12.

[^3]: ${ }^{1}$ Charles C. Gillispie, ed., Dictionary of Scientific Biography, Leonhard Euler, p. 468.
 ${ }^{2}$ Morris Kline, Mathematical Thought from Ancient to Modern Time's, Oxford U. Press, New York, 1972. p. 592.

[^4]: ${ }^{3}$ Clifford Truesdell, "Leonhard Euler, Supreme Geometer," in Euler's Elements of Algebra, p. xii.

[^5]: ${ }^{4}$ Ron Calinger, "Leonhard Euler: The First St. Petersburg Years (1727-1741)," Historia Mathematica, Vol. 23, 1996, pp. 121-166 contains an account of the Basel problem and an excellent survey of Euler's first stay in Russia.

[^6]: ${ }^{5}$ Truesdell, p. xx.
 ${ }^{6}$ Ibid., p. xv.
 ${ }^{7}$ Calinger, p. 143.

[^7]: ${ }^{8}$ Euler, Letters of Euler on Different Subjects in Natural Philosophy, Arno Press, New York, 1975, p. 19.
 ${ }^{9}$ Item \#8 is an English translation of Euler's Letters to a German Princess.
 ${ }^{10}$ Ibid., p. 155.

[^8]: ${ }^{11}$ Ibid., p. ii.
 ${ }^{12}$ See also Ron Calinger, "Euler's letters to a princess of Germany as an expression of his mature scientific outlook," Archives of the History of the Exact Sciences, Vol. 15, No. 3, 1975/76, pp. 211-233.
 ${ }^{13}$ Euler, Letters of Euler on Different Subjects in Natural Philosophy, p. 26.

[^9]: ${ }^{14}$ Truesdell, p. xxix.

[^10]: ${ }^{15}$ Roger Burlingame, Benjamin Franklin: Envoy Extraordinary, Coward-McCann, New York, 1967, p. 182.

[^11]: ${ }^{16}$ Euler, Opera Omnia, Ser. 3, Vol. 12, p. 308.

