Pattern Formation and Lattice Gas Automata

Anna T. Lawniczak
Raymond Kapral
Editors
Other Titles in This Series

Volume
6 Anna T. Lawniczak and Raymond Kapral, Editors
 Pattern formation and lattice gas automata
 1996

5 John Chadam, Martin Golubitsky, William Langford, and Brian
 Wetton, Editors
 Pattern formation: Symmetry methods and applications
 1996

4 William F. Langford and Wayne Nagata, Editors
 Normal forms and homoclinic chaos
 1995

3 Anthony Bloch, Editor
 Hamiltonian and gradient flows, algorithms and controls
 1994

2 K. A. Morris, Editor
 Control of flexible structures
 1993

1 Michael J. Enos, Editor
 Dynamics and control of mechanical systems: The falling cat and related
 problems
 1993
This page intentionally left blank
Pattern Formation and Lattice Gas Automata

Anna T. Lawniczak
Raymond Kapral
Editors
The Fields Institute
for Research in Mathematical Sciences

The Fields Institute is named in honour of the Canadian mathematician John Charles Fields (1863–1932). Fields was a remarkable man who received many honours for his scientific work, including election to the Royal Society of Canada in 1909 and to the Royal Society of London in 1913. Among other accomplishments in the service of the international mathematics community, Fields was responsible for establishing the world’s most prestigious prize for mathematics research—the Fields Medal.

The Fields Institute for Research in Mathematical Sciences is supported by grants from the Ontario Ministry of Education and Training and the Natural Sciences and Engineering Research Council of Canada. The Institute is sponsored by McMaster University, the University of Toronto, and the University of Waterloo and has affiliated universities in Ontario and across Canada. Funding was received from the NATO Advanced Research Workshops Program.

1991 Mathematics Subject Classification. Primary 82C22; Secondary 82C05, 82C20, 82C40, 82C41, 76M25, 76N15, 76F99, 76M25, 60K35.

Library of Congress Cataloging-in-Publication Data
Pattern formation and lattice gas automata / Anna T. Lawniczak, Raymond Kapral, editors.
 p. cm.—(Fields Institute communications, ISSN 1069-5265; v. 6)
 Includes bibliographical references.
 Q327.P347 1995
 530.4'75'01175—dc20 95-43530
 CIP
Contents

Preface vii

Liquid-Gas Models on 2D and 3D Lattices
C. APPERT, V. POT, AND S. ZALESKI 1

Renormalization of Lattice Gas Transport Coefficients
B. M. BOGHSIAN AND W. TAYLOR 13

The Discrete Boltzmann Equation for Gases with Bimolecular or Dissociation-Recombination Reactions
I. BONZANI, M.A. CIMASCHI, AND R. MONACO 29

Diffusion and Propagation in Lorentz Lattice Gases
E.G.D. COHEN AND F. WANG 43

Lattice Gas Simulations of Replicating Domains
S.P. DAWSON, B. HASSLACHER, AND J.E. PEARSON 55

Spinodal Decomposition and Interface Dynamics for Glauber Evolution with Kac Potential
A. DE MASI 65

Fluctuations and Chemical Waves in a Bistable Reacting System
K. DIEMER, A. LAWNICZAK, AND R. KAPRAL 79

Lattice Boltzmann-Langevin Equations
J.W. DUFTY AND M.H. ERNST 99

Instabilities and Patterns
M.H. ERNST AND H.J. BUSSEMAKER 109

Vortex Street and Lévy Walks
F. HAYOT AND L. WAGNER 123

Lattice Gases Without Semi-Detailed Balance
M. HÉNON 129

A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows
S. HOU, J. STERLING, S. CHEN, AND G.D. DOOLEN 151

CAM-8: A Computer Architecture Based on Cellular Automata
N. MARGOLUS 167
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Fluctuations in a Spin System</td>
<td>189</td>
</tr>
<tr>
<td>E. Presutti</td>
<td></td>
</tr>
<tr>
<td>A Benchmark for Lattice BGK Model: Flow over a Backward-Facing Step</td>
<td>207</td>
</tr>
<tr>
<td>Y.H. Qian, S. Succi, F. Massaioletti, and S.A. Orszag</td>
<td></td>
</tr>
<tr>
<td>Lattice Gas Self Diffusion in Random Porous Media</td>
<td>217</td>
</tr>
<tr>
<td>R. Rechtman and A. Salcido</td>
<td></td>
</tr>
<tr>
<td>Lévy Laws for Lattice Gas Automata</td>
<td>227</td>
</tr>
<tr>
<td>O. Tribe and J.-P. Boon</td>
<td></td>
</tr>
<tr>
<td>New Class of Cellular Automata for Reaction-Diffusion Systems Applied to the CIMA Reaction</td>
<td>239</td>
</tr>
<tr>
<td>J. R. Weimar and J.-P. Boon</td>
<td></td>
</tr>
<tr>
<td>Lattice-Gas Cellular Automaton Model for One-Mode Lasers</td>
<td>249</td>
</tr>
<tr>
<td>X.-G. Wu and R. Kapral</td>
<td></td>
</tr>
<tr>
<td>A Lattice-Gas with Long-Range Interactions Coupled to a Heat Bath</td>
<td>261</td>
</tr>
<tr>
<td>J. Yepez</td>
<td></td>
</tr>
<tr>
<td>Prepared by G.D. Doole</td>
<td></td>
</tr>
</tbody>
</table>
Preface

Lattice-gas automata are fully discrete models that employ a simplified molecular dynamics consisting of propagation and collision events. If the basic conservation laws and symmetries are preserved this dynamics can lead to the Navier-Stokes equations of hydrodynamics. The introduction of such lattice-gas models in 1986 (Frisch et al. [1986], d'Humieres et al. [1987]) prompted a great deal of research (Doolen [1990]) on moderate Reynolds number hydrodynamic flows since these models provide a computational scheme that is stable and can be applied easily to complicated geometries.

The most recent developments in the field have taken the research far beyond the original goal of simulating hydrodynamic flows. Current work has focused on further development of these models and their applications to diverse physical problems. These include: the development of more elaborate models to restore the Galilean invariance that is destroyed by the lattice symmetries, studies of the statistical mechanics of lattice-gas models, extensions to multi-phase systems where phase separation and flows in porous media can be studied, the construction of lattice-gas models for chemically reacting systems, as well as applications to a variety of other physical problems.

Many of these newer developments utilize lattice-gas descriptions that differ radically from the original hydrodynamic lattice-gas models; for example, the models for phase separation often lack semi-detailed balance and reactive models intended to describe reaction-diffusion phenomena need not conserve momentum. It has also been recognized that fluctuations which naturally arise in lattice-gas models can be exploited to obtain a deeper level of description of the system. The study of such fluctuations and their correlations forms the basis for the investigations of the statistical mechanics of these models. However, these fluctuations are often a source of difficulty in lattice-gas simulations of the Navier-Stokes equations since considerable averaging is required to obtain smooth velocity fields.

Lattice-gas automata have also inspired the development and investigation of other classes of discrete models, the most well-studied of which is the lattice-Boltzmann model. While this model falls into the category of finite-difference schemes, the philosophy of its construction is different; it is based on physical considerations rather than pure discretisation of macroscopic partial differential equations describing physical phenomena. The use of the lattice-Boltzmann model
has allowed the study of a broad class of systems that would have been difficult by other means.

This conference on Pattern Formation and Lattice-Gas Automata had as its aim the review of these diverse recent developments in the field. The sessions were organized around the following themes: theory and development of lattice-gas and lattice-Boltzmann methods and their applications to hydrodynamics, multi-phase flows, flows through porous media, reaction-diffusion systems, pattern formation phenomena, and phase separation processes. Various aspects of the statistical analyses of these methods were discussed with emphasis on fluctuations and correlations, as well as computational prospects including development of dedicated hardware.

It was clear from the discussions at the meeting that lattice-gas automata continue to be developed in radically new ways, have been applied in many different fields and contexts, and will continue to inspire controversy. Their greatest utility may lie in fields quite different from their original application to hydrodynamic flows.

It remains for us to thank the other members of the organizing committee: Jean-Pierre Boon, Gary Doolen and Daniel Rothman. We gratefully acknowledge NATO for their support under the NATO Advanced Research Workshop program and the Fields Institute for Research in Mathematical Sciences for providing support and for hosting the conference. We also express our appreciation to B. Lawniczak for his help in the organization of the meeting and to Gary Doolen for providing the list of abstracts.

References

Copying and reprinting Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Assistant Director of Production, American Mathematical Society, P. O. Box 6248, Providence, Rhode Island 02940-6248. Requests can also be made by e-mail to reprint-permission@math.ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)
Pattern Formation and Lattice Gas Automata
Anna T. Lawniczak and Raymond Kapral, Editors

This book is the Proceedings of the Fields Institute Conference/NATO Advanced Research Workshop held in June 1993. The articles review the diverse recent progress in the theory and development of lattice-gas and lattice Boltzmann methods and their applications to hydrodynamics, multi-phase flows, flows through porous media, reaction-diffusion systems, pattern formation phenomena, and phase separation processes. Discussed here are various aspects of the statistical analysis of these methods, with emphasis on fluctuations and correlations, as well as computational prospects including development of dedicated hardware.

Features:

• up-to-date articles covering theory and applications

• interdisciplinary approach, which includes mathematics, physics, chemistry, and geophysics

• abstracts of papers published from 1992 through 1995