Nonlinear Dynamics and Time Series
Building a Bridge between the Natural and Statistical Sciences

Colleen D. Cutler
Daniel T. Kaplan
Editors
Nonlinear Dynamics and Time Series
This page intentionally left blank
Nonlinear Dynamics and Time Series

Building a Bridge between the Natural and Statistical Sciences

Colleen D. Cutler
Daniel T. Kaplan
Editors
The Fields Institute is named in honour of the Canadian mathematician John Charles Fields (1863–1932). Fields was a visionary who received many honours for his scientific work, including election to the Royal Society of Canada in 1909 and to the Royal Society of London in 1913. Among other accomplishments in the service of the international mathematics community, Fields was responsible for establishing the world’s most prestigious prize for mathematics research—the Fields Medal.

The Fields Institute for Research in Mathematical Sciences is supported by grants from the Ontario Ministry of Education and Training and the Natural Sciences and Engineering Research Council of Canada. The Institute is sponsored by McMaster University, the University of Toronto, the University of Waterloo, and York University and has affiliated universities in Ontario and across Canada.

2000 Mathematics Subject Classification. Primary 62M10, 58-XX; Secondary 62M20.

Library of Congress Cataloging-in-Publication Data
Nonlinear dynamics and time series : building a bridge between the natural and statistical sciences / Colleen D. Cutler, Daniel T. Kaplan, editors.
 p. cm.—(Fields Institute communications, ISSN 1069-5265 ; 11)
 Includes bibliographical references.
QA280.N64 1997 819.55—dc21 96-44411 CIP

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s).
(Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)
Contents

Preface vii

Opening Lectures

Tools for the Analysis of Chaotic Data 1
HENRY D. I. ABRABANEL

Some Comments on Nonlinear Time Series Analysis 17
HOWELL TONG

Embeddings, Dimension, and System Reconstruction

A General Approach to Predictive and Fractal Scaling Dimensions 29
in Discrete-Index Time Series
COLLEEN D. CUTLER

Statistics for Continuity and Differentiability: An Application to 49
Attractor Reconstruction from Time Series
LOUIS M. PECORA, THOMAS L. CARROLL and JAMES F. HEAGY

Reconstruction of Integrate-and-Fire Dynamics 63
TIM SAUER

Surrogate Data Methodology

On the Validity of the Method of Surrogate Data 77
KUNG-SIK CHAN

Using “Surrogate Surrogate Data” to Calibrate the Actual Rate of 99
False Positives in Tests for Nonlinearity in Time Series
JAMES THEILER and DEAN PRICHARD
Local Lyapunov Exponents

Chaos with Confidence: Asymptotics and Applications of Local Lyapunov Exponents
BARBARA A. BAILEY, STEPHEN ELLNER and DOUGLAS W. NYCHKA

Estimating Local Lyapunov Exponents
ZHAN-QIAN LU and RICHARD L. SMITH

Long-Range Dependence

Defining and Measuring Long-Range Dependence
PETER HALL

Modelling Nonlinearity and Long Memory in Time Series
PETER M. ROBINSON and PAOLO ZAFFARONI

Data Analysis and Applications

Ergodic Distributions of Random Dynamical Systems
L. MARK BERLINER, STEVEN N. MACEACHERN and CATHERINE SCIPIONE FORBES

Detecting Structure in Noise
LISA BORLAND

Characterizing Nonlinearity in Weather and Epilepsy Data: A Personal View
MARTIN C. CASDAGLI

Assessment of Linear and Nonlinear Correlations Between Neural Firing Events
ANDRÉ LONGTIN and DANIEL M. RACICOT

Markov Chain Methods in the Analysis of Heart Rate Variability
STEPHEN J. MERRILL and JOHN R. COCHRAN
Preface

The papers collected in this volume reflect an attempt to bring together researchers in two fields: Nonlinear Dynamics, and Statistics, with the goal of providing an exchange and creating a link between two diverse groups with a common interest in the analysis of nonlinear time series data.

The workshop in which these papers originated was entitled "Nonlinear Dynamics and Time Series: Building a Bridge Between the Natural and Statistical Sciences," and was held at the Centre de Recherches Mathématiques (CRM) in Montréal, Canada in July 1995. The workshop was a joint venture funded partly by the CRM and partly by The Fields Institute for Research in the Mathematical Sciences. It followed in the footsteps of recent similar interdisciplinary meetings, such as the one-day meeting on chaos organized by the Royal Statistical Society in 1991, and the two-day meeting on chaos and forecasting sponsored by the Royal Society of London in 1994.

With ideas from nonlinear dynamics being applied more and more to real-world problems, it has become of increasing importance to develop and understand statistical methodology designed specifically for nonlinear and dynamical approaches to time series. And as nonlinear dynamicists attempt to cope with the limitations of noisy real-world data, the strategies and expertise of statisticians become of growing relevance and significance to them.

For statisticians, nonlinear dynamics offers new perspectives on the modelling and analyses of time series data, and has provided an influx of unfamiliar terminology, such as chaos, sensitivity to initial conditions, attractors, fractal dimension, embedding dimension, 1/f noise, Lyapunov exponents, and bifurcations. Ideas from nonlinear dynamics stand to make an impact on the way in which statisticians view data, while at the same time presenting a wealth of open statistical problems to which statisticians can contribute their expertise, thereby providing a substantial return to the dynamics community.

Dynamicists and statisticians often need access to the concepts and tools developed in each discipline, but it can be difficult to cross the terminological and conceptual gulf that separates the two fields. We felt that by bringing together workers in both fields, charged with the task of making their own work accessible to those from the other side, we could lay the foundations for a bridge. For those who participated in the workshop, we feel that this ambition was fulfilled.
The normal mode of scientific communication, that of publication in peer-reviewed journals, is not always well suited to maintaining communication between fields. It can be daunting to pick up a journal from another field; the vocabulary and methods are often unfamiliar, and the motivation behind a particular approach (or even the significance and meaning of the problem being investigated) may be mysterious and obscure to the uninitiated. This problem is exacerbated by the fact that introductory material, essential to outsiders, is often suppressed in the name of conciseness and the desire to emphasize new results. It is even more difficult to write a paper for a journal in a different field; the reviewers may not be sympathetic to or cognizant of the methods and motivation behind the paper, or the style may simply jar them.

In reviewing the papers presented here, the editors and the anonymous peer-reviewers have attempted to minimize these problems. The result, we believe, is a collection of interrelated papers that highlight current areas of research in statistics that might have particular applicability to nonlinear dynamics, and new methodology and open data analysis problems in nonlinear dynamics that might find their way into the toolkits and research interests of statisticians.

We are of course very grateful for the funding, from both The Fields Institute and CRM, that made this workshop and volume possible. We thank John Chadam, then director of The Fields Institute, for providing the impetus to organize the workshop, and also the support staff, particularly Judy Motts of Fields and Louis Pelletier of CRM, for their excellent organizational work. A special note of thanks must go to the publications assistant Erna Unrau of The Fields Institute, who was responsible for getting this volume into the final form you see before you now, and who offered much sage advice throughout the publication process, not the least of which was "Relax, calm down, have a doughnut."

Finally, and most importantly, we thank the participants and authors themselves, for contributing their time, talents, and enthusiasm to making the workshop a great success.

Colleen Cutler
Danny Kaplan

August 1996
This book is a collection of research and expository papers reflecting the interfacing of two fields: nonlinear dynamics (in the physiological and biological sciences) and statistics. It presents the proceedings of a four-day workshop entitled “Nonlinear Dynamics and Time Series: Building a Bridge Between the Natural and Statistical Sciences” held at the Centre de Recherches Mathématiques (CRM) in Montréal in July 1995. The goal of the workshop was to provide an exchange forum and to create a link between two diverse groups with a common interest in the analysis of nonlinear time series data.

An important interdisciplinary work ... provides a valuable collection of recent research ... should appeal to scientists and statisticians who are relatively new to the field and to others interested in a very readable exploration of the topics covered.

—Journal of Computational Intelligence in Finance