Galois Theory, Hopf Algebras, and Semiabelian Categories

George Janelidze
Bodo Pareigis
Walter Tholen
Editors
Galois Theory, Hopf Algebras, and Semiabelian Categories
This page intentionally left blank
The Fields Institute
for Research in Mathematical Sciences

The Fields Institute is named in honour of the Canadian mathematician John Charles Fields (1863–1932). Fields was a visionary who received many honours for his scientific work, including election to the Royal Society of Canada in 1909 and to the Royal Society of London in 1913. Among other accomplishments in the service of the international mathematics community, Fields was responsible for establishing the world’s most prestigious prize for mathematics research—the Fields Medal.

The Fields Institute for Research in Mathematical Sciences is supported by grants from the Ontario Ministry of Training, Colleges and Universities, and the Natural Sciences and Engineering Research Council of Canada. The Institute is sponsored by Carleton University, McMaster University, the University of Ottawa, the University of Toronto, the University of Waterloo, the University of Western Ontario, and York University. In addition there are several affiliated universities and corporate sponsors, from Canada and the United States.

Library of Congress Cataloging-in-Publication Data
Galois theory, Hopf algebras, and semiabelian categories/George Janelidze, Bodo Pareigis, Walter Tholen, editors.
p. cm. — (Fields Institute Communications; v. 43)
Includes bibliographical references.
ISBN 0-8218-3290-5 (acid-free paper)
512'.32-dc22
2004050271

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)

© 2004 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
This publication was prepared by The Fields Institute.
Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 09 08 07 06 05 04
Contents

Preface vii

Algebraic Cohomology: The Early Days
MICHAEL BARR 1

A Survey of Semi-abelian Categories
FRANCIS BORCEUX 27

Commutator Theory in Regular Mal’cev Categories
DOMINIQUE BOURN 61

Categorical Aspects of Modularity
DOMINIQUE BOURN and MARINO GRAN 77

Crossed Complexes and Homotopy Groupoids as Non Commutative
Tools for Higher Dimensional Local-to-global Problems
RONALD BROWN 101

Galois Groupoids and Covering Morphisms in Topos Theory
MARTA BUNGE 131

Galois Corings from the Descent Theory Point of View
STEFAN CAENEPEEL 163

Quantum Categories, Star Autonomy, and Quantum Groupoids
BRIAN DAY AND ROSS STREET 187

Morphisms of 2-groupoids and Low-dimensional Cohomology
of Crossed Modules
JOHN W. DUSKIN, RUDGER W. KIEBOOM,
and **ENRICO M. VITALE** 227

Applications of Categorical Galois Theory in Universal Algebra
MARINO GRAN 243

Fibrations for Abstract Multicategories
CLAUDIO HERMIDA 281

Lie-Rinehart Algebras, Descent, and Quantization
JOHANNES HUEBSCHMANN 295
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Note on the Semiabelian Variety of Heyting Semilattices</td>
<td>317</td>
</tr>
<tr>
<td>Peter Johnstone</td>
<td></td>
</tr>
<tr>
<td>Monoidal Functors Generated by Adjunctions, with</td>
<td>319</td>
</tr>
<tr>
<td>Applications to Transport of Structure</td>
<td></td>
</tr>
<tr>
<td>G. M. Kelly and Stephen Lack</td>
<td></td>
</tr>
<tr>
<td>On the Cyclic Homology of Hopf Crossed Products</td>
<td>341</td>
</tr>
<tr>
<td>M. Khalkhali and B. Rangipour</td>
<td></td>
</tr>
<tr>
<td>On Sequentially h-complete Groups</td>
<td>353</td>
</tr>
<tr>
<td>Gábor Lukács</td>
<td></td>
</tr>
<tr>
<td>Embeddings of Algebras</td>
<td>359</td>
</tr>
<tr>
<td>John L. MacDonal</td>
<td></td>
</tr>
<tr>
<td>Universal Covers and Category Theory in Polynomial</td>
<td>373</td>
</tr>
<tr>
<td>and Differential Galois Theory</td>
<td></td>
</tr>
<tr>
<td>Andy R. Magid</td>
<td></td>
</tr>
<tr>
<td>Weak Categories in Additive 2-categories with Kernels</td>
<td>387</td>
</tr>
<tr>
<td>N. Martins-Ferreira</td>
<td></td>
</tr>
<tr>
<td>Dendrotopic Sets</td>
<td>411</td>
</tr>
<tr>
<td>Thorsten Palm</td>
<td></td>
</tr>
<tr>
<td>On Factorization Systems and Admissible Galois Structures</td>
<td>463</td>
</tr>
<tr>
<td>Ana Helena Roque</td>
<td></td>
</tr>
<tr>
<td>Hopf-Galois and Bi-Galois Extensions</td>
<td>469</td>
</tr>
<tr>
<td>Peter Schauenburg</td>
<td></td>
</tr>
<tr>
<td>Extension Theory in Mal’tsev Varieties</td>
<td>517</td>
</tr>
<tr>
<td>Jonathan D. H. Smith</td>
<td></td>
</tr>
<tr>
<td>On Projective Generators Relative to Coreflective Classes</td>
<td>523</td>
</tr>
<tr>
<td>Lurdes Sousa</td>
<td></td>
</tr>
<tr>
<td>The Monotone-Light Factorization for Categories via Preorders</td>
<td>533</td>
</tr>
<tr>
<td>João J. Xarez</td>
<td></td>
</tr>
<tr>
<td>Separable Morphisms of Categories via Preordered Sets</td>
<td>543</td>
</tr>
<tr>
<td>João J. Xarez</td>
<td></td>
</tr>
<tr>
<td>Frobenius Algebras in Tensor Categories and Bimodule Extensions</td>
<td>551</td>
</tr>
<tr>
<td>Shigeru Yamagami</td>
<td></td>
</tr>
</tbody>
</table>
Preface

During the week of September 23-28, 2002, the editors of this volume organized a Workshop on Categorical Structures for Descent and Galois Theory, Hopf Algebras, and Semigabelian Categories at the Fields Institute for Research in Mathematical Sciences in Toronto. The goal of the Workshop was to bring together researchers working in the quite distinct but nevertheless interrelated and partly overlapping areas mentioned in its title. The meeting was attended by almost eighty mathematicians from various research communities and boasted twenty invited lectures and numerous contributed talks that led to an inspiring atmosphere of learning and scientific exchange.

This volume can only partially reflect the Workshop’s themes but should nevertheless give the reader a good idea about the current connections among abstract Galois theories, Hopf algebras, and semiabelian categories. Here is a very brief indication of the origins of those connections. Hopf algebras arrived to the Galois theory of rings as early as the 1960s — independently of, but in fact similarly to, the way in which algebraic group schemes were introduced to the theory of étale coverings in algebraic geometry. Galois theory, in turn, was extended to elementary toposes and was then formulated in purely categorical contexts. Eventually it became general enough to even include abstractions of the theory of central extensions, to mention only one of various fairly recent developments. In fact, classically, central extensions of groups together with the homology functors $H_1(-, \mathbb{Z})$ and $H_2(-, \mathbb{Z})$ can be used to begin homological algebra, just like covering spaces together with the homotopy functors π_0 and π_1 are the starting gadgets of homotopy theory. Finally, during the past four years semiabelian categories have emerged as a very good environment in which to pursue not just basic modern algebra but in fact homological algebra of groups and other non-abelian structures categorically.

Given the diversity of the backgrounds of the presenters at the Workshop, this volume cannot be expected to contain a homogeneous sequence of chapters on its themes. Rather, the reader will find a collection of beautiful but fairly independent articles on selected topics in algebra, topology, and pure category theory that should seriously contribute to the categorical unification of the subjects in question. The survey articles contained in this volume should be particularly helpful in this regard.

A rough general “map” of the topics/articles presented in this volume may be displayed as follows, with the numbers referring to the (alphabetical) list of contributions contained in the volume. Most of the papers are mentioned more than once. Solid lines represent links explicitly discussed in this volume, while dotted lines indicate other known links.
1. M. Barr, *Algebraic cohomology: the early days*
2. F. Borceux, *A survey of semi-abelian categories*
3. D. Bourn, *Commutator theory in regular Mal’cev categories*
4. D. Bourn and M. Gran, *Categorical aspects of modularity*
5. R. Brown, *Crossed complexes and homotopy groupoids as non commutative tools for higher dimensional local-to-global problems*
6. M. Bunge, *Galois groupoids and covering morphisms in topos theory*
7. S. Caenepeel, *Galois corings from the descent theory point of view*
8. B. Day and R. H. Street, *Quantum categories, star autonomy, and quantum groupoids*
10. M. Gran, *Applications of categorical Galois theory in universal algebra*
11. C. Hermida, *Fibrations for abstract multicategories*
12. J. Huebschmann, *Lie-Rinehart algebras, descent, and quantization*
13. P. T. Johnstone, *A note on the semiabelian variety of Heyting semilattices*
14. G. M. Kelly and S. Lack, *Monoidal functors generated by adjunctions, with applications to transport of structure*
15. M. Khalkhali and B. Rangipour, *On the cyclic homology of Hopf crossed products*
16. G. Lukács, *On sequentially h-complete groups*
17. J. L. MacDonald, *Embeddings of algebras*
18. A. R. Magid, *Universal covers and category theory in polynomial and differential Galois theory*
19. N. Martins-Ferreira, *Weak categories in additive 2-categories with kernels*
20. T. Palm, *Dendrotopic sets*
21. A. H. Roque, *On factorization systems and admissible Galois structures*
22. P. Schauenburg, *Hopf-Galois and bi-Galois extensions*
23. J. D. H. Smith, *Extension theory in Mal’tsev varieties*
24. L. Sousa, *On projective generators relative to coreflective classes*
25. J. J. Xarez, *The monotone-light factorization for categories via preorders*
26. J. J. Xarez, *Separable morphisms of categories via preordered sets*
27. S. Yamagami, *Frobenius algebras in tensor categories and bimodule extensions*
We express our sincere thanks to the Fields Institute for hosting and supporting the Workshop and publishing this volume. We are particularly grateful to Ms. Debbie Iscoe for her help in preparing the files. We also thank the Faculty of Arts of York University for additional financial assistance.

George Janelidze
Bodo Pareigis
Walter Tholen
This page intentionally left blank
This volume is based on talks given at the Workshop on Categorical Structures for Descent and Galois Theory, Hopf Algebras, and Semiabelian Categories held at The Fields Institute for Research in Mathematical Sciences (Toronto, ON, Canada). The meeting brought together researchers working in these interrelated areas.

This collection of survey and research papers gives an up-to-date account of the many current connections among Galois theories, Hopf algebras, and semiabelian categories. The book features articles by leading researchers on a wide range of themes, specifically, abstract Galois theory, Hopf algebras, and categorical structures, in particular quantum categories and higher-dimensional structures.

Articles are suitable for graduate students and researchers, specifically those interested in Galois theory and Hopf algebras and their categorical unification.