Nonlinear Dynamics and Evolution Equations

Hermann Brunner
Xiao-Qiang Zhao
Xingfu Zou
Editors
Nonlinear Dynamics and Evolution Equations

Hermann Brunner
Xiao-Qiang Zhao
Xingfu Zou
Editors
The Fields Institute
for Research in Mathematical Sciences

The Fields Institute is a center for mathematical research, located in Toronto, Canada. Our mission is to provide a supportive and stimulating environment for mathematics research, innovation and education. The Institute is supported by the Ontario Ministry of Training, Colleges and Universities, the Natural Sciences and Engineering Research Council of Canada, and seven Ontario universities (Carleton, McMaster, Ottawa, Toronto, Waterloo, Western Ontario, and York). In addition there are several affiliated universities and corporate sponsors in both Canada and the United States.

Fields Institute Editorial Board: Carl R. Riehm (Managing Editor), Barbara Lee Keyfitz (Director of the Institute), Thomas S. Salisbury (Deputy Director), John Bland (Toronto), Kenneth R. Davidson (Waterloo), Joel Feldman (UBC), R. Mark Goresky (Institute for Advanced Study, Princeton), Cameron Stewart (Waterloo), Noriko Yui (Queen’s).

2000 Mathematics Subject Classification. Primary 34C20, 34K05, 35B40, 35J55, 37C05, 37C65, 37K55, 53D17, 92D25, 92D30.

Library of Congress Cataloging-in-Publication Data
Nonlinear dynamics and evolution equations / Hermann Brunner, Xiao-Qiang Zhao, Xingfu Zou, editors.
 p. cm. — (Fields Institute communications, ISSN 1069-5265 ; 48)
 Includes bibliographical references (alk. paper)
 ISBN 0-8218-3721-4
QA377.156 2004 515'.353—dc22 2006042831

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org. Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)

© 2006 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights except those granted to the United States Government.
Copyright of individual articles may revert to the public domain 28 years after publication. Contact the AMS for copyright status of individual articles.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
This publication was prepared by the Fields Institute.
http://www.math.utoronto.ca
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 11 10 09 08 07 06
Contents

Preface v

Disease Spread in Metapopulations
 Julien Arino and P. van den Driessche

On Some Nonlocal Evolution Equations Arising in Materials Science
 Peter W. Bates

Invariant Tori for Hamiltonian PDE
 Walter Craig

Stable and Not Too Unstable Solutions on R^n for Small Diffusion
 Norman Dancer

Some Recent Results on Diffusive Predator-prey Models in Spatially
 Heterogeneous Environment
 Yihong Du and Junping Shi

Delayed Non-local Diffusive Systems in Biological Invasion and
 Disease Spread
 S. A. Gourley and J. Wu

Asymptotic Behavior for Systems Comparable to Quasimonotone
 Systems
 Jifa Jiang

C^1-Smoothness of Center Manifolds for Differential Equations with
 State-dependent Delay
 Tibor Krisztin

Normal Forms for Germs of Analytic Families of Planar Vector Fields
 Unfolding a Generic Saddle-node or Resonant Saddle
 Christiane Rousseau

Generic Properties of Symplectic Diffeomorphisms
 Radu Saghin and Zhihong Xia

Mathematical Aspects of Modelling Tumour Angiogenesis
 B. D. Sleeman

v

1

13

53

67

95

137

201

213

227

247

257
Interpretation of the Generalized Asymmetric May-Leonard Model of Three Species Competition as a Food Web in a Chemostat
Gail S. K. Wolkowicz

On Exact Poisson Structures
Yingfei Yi and Xiang Zhang
Preface

The papers in this volume of the *Fields Institute Communications* reflect a broad spectrum of current research activities on the theory and applications of nonlinear dynamics and evolution equations. They are based on lectures given during the International Conference on Nonlinear Dynamics and Evolution Equations at Memorial University of Newfoundland, St. John’s, NL, Canada, July 6–10, 2004. The aim of that conference was to bring together leading experts, researchers, and graduate students for five days of high-level lectures and informal research interactions; this was made possible by generous financial support from the Centre de recherches mathématiques (CRM), Montréal, the Fields Institute for Research in Mathematical Sciences, Toronto, the Pacific Institute for the Mathematical Sciences (PIMS), Vancouver, and the Atlantic Association for Research in the Mathematical Sciences (AARMS).

This volume contains thirteen invited (and refereed) papers. Nine of these are survey papers, introducing the reader to, and describing the current state of the art in, major areas of dynamical systems, ordinary, functional and partial differential equations, and applications of such equations in the mathematical modelling of various biological and physical phenomena. These papers are complemented by four research papers that examine particular problems in the theory of dynamical systems (asymptotic properties of systems that are comparable to quasi-monotone systems; smoothness of center manifolds for state-dependent delay differential equations; dynamics of the asymmetric generalized May-Leonard model of three species competition; exact Poisson structures on manifolds).

Four of the survey papers deal with various aspects of the theory of partial differential equations and dynamical systems. Motivated by the facts that many of the celebrated (nonlinear) PDEs of mathematical physics can be viewed as Hamiltonian systems and that solutions of their linearized versions exhibit periodic or quasi-periodic solutions, Walter Craig (McMaster University, Canada) presents an overview of some of the techniques and results of KAM-like methods for analyzing analogous phenomena in solutions to nonlinear PDEs. Norman Dancer (University of Sydney, Australia) surveys a number of open questions for PDEs with small diffusion, \(-\varepsilon^2 \Delta u = f(u)\), in various geometries: of interest are results on the number of solutions and their asymptotic shapes. The contribution by Christiane Rousseau (Université de Montréal, Canada), on normal forms for germs of analytic families of planar vector fields unfolding a generic saddle-node or resonant saddle, is concerned with the case in which the normal forms are not polynomial but analytic and for which the formal change of coordinates to normal form generically diverges.
Finally, Radu Saghin (University of Toronto, Canada) and Zhihong Xia (Northwestern University, USA) study generic properties of two particular classes of dynamical systems, namely symplectic diffeomorphisms and Hamiltonian systems.

Applications in biological sciences and in materials science are surveyed in five contributions. Two of these papers discuss biological invasions and disease spread: Julien Arino (University of Manitoba, Canada) and Pauline van den Driessche (University of Victoria, Canada) look at extensions of continuous time and discrete space metapopulation models addressing cross infection between several species and keeping track of the patches in which the species reside, while Stephen Gourley (University of Surrey, UK) and Jianhong Wu (York University, Canada) study nonlocal diffusive equations that arise in the modelling and analysis of long-term behaviors of biological and epidemiological systems where individuals move randomly and the feedback nonlinearity involves time lags.

Predator-prey and competition models are the subjects of the survey by Yihong Du (University of New England, Australia) and Junping Shi (College of William and Mary, USA) and the research paper by Gail Wolkowicz (McMaster University, Canada), respectively. The former presents recent results on diffusive predator-prey models in spatially heterogeneous environments and then examines the influence of a protection zone in a particular diffusive model. The paper by Wolkowicz studies the global dynamics of a Lotka-Volterra system of three species competition by using a model of a food web in a chemostat involving three species competing for a single (non-reproducing) nutrient, with one of the competitors also predating on one of the other two competitors.

Brian Sleeman (University of Leeds, UK) presents an illuminating description of how mathematical models may be formulated on the basis of the complex biochemical processes involved in the modelling of tumour angiogenesis (the formation of new blood vessels), and he describes various properties of solutions to such models (such as local existence and uniqueness, and the development of spikes).

A different field of applications (materials science) is reviewed in the survey by Peter Bates (Michigan State University, USA). In his discussion of nonlinear evolution equations arising in materials science, he describes various properties such as well-posedness, asymptotics, travelling waves or pulses. These systems represent lattice or nonlocal versions of the Allen-Cahn, Cahn-Hilliard, phase-field, or Klein-Gordon equations.

The other invited research papers are by Jifa Jiang (Tongji University, China) who analyzes the asymptotic behavior for systems that are comparable to quasimonotone systems; by Tibor Krisztin (University of Szeged, Hungary), on C^1-smoothness of center manifolds for differential equations with state-dependent delay; and by Yingfei Yi (Georgia Institute of Technology, USA) and Xiang Zhang (Shanghai Jiaotong University, China) who present, among other things, a characterization of exact Poisson structures which are invariant under the flow of a class of completely integrable systems.
It has been the aim of the editors to create a proceedings volume that may serve as an important resource, both for new researchers and experts in this promising area, for many years to come. The editors wish to thank the Fields Institute for Research in Mathematical Science and its Editorial Board (chaired by Carl Riehm) for agreeing to include this set of papers in the Fields Institute Communications series.

Hermann Brunner (Memorial University of Newfoundland)
Xiao-Qiang Zhao (Memorial University of Newfoundland)
Xingfu Zou (University of Western Ontario)
This page intentionally left blank
Titles in This Series

48 Hermann Brunner, Xiao-Qiang Zhao, and Xingfu Zou, Editors, Nonlinear dynamics and evolution equations, 2006
46 Thierry Passot, Catherine Sulem, and Pierre-Louis Sulem, Editors, Topics in kinetic theory, 2005
45 Ragnar-Olaf Buchweitz and Helmut Lenzing, Editors, Representations of algebras and related topics, 2005
44 Lajos Horváth and Barbara Szyszkowicz, Editors, Asymptotic methods in stochastics, 2004
43 George Janelidze, Bodo Pareigis, and Walter Tholen, Editors, Galois theory, Hopf algebras, and semiabelian categories, 2004
42 Saber Elaydi, Gerry Ladas, Jianhong Wu, and Xingfu Zou, Editors, Difference and differential equations, 2004
41 Alf van der Poorten and Andreas Stein, Editors, High primes and misdemeanours: Lectures in honour of the 60th birthday of Hugh Cowie Williams, 2004
40 Vlastimil Dlab and Claus Michael Ringel, Editors, Representations of finite dimensional algebras and related topics in Lie theory and geometry, 2004
39 Stephen Berman, Yuly Billig, Yi-Zhi Huang, and James Lepowsky, Editors, Vector operator algebras in mathematics and physics, 2003
38 Noriko Yui and James D. Lewis, Editors, Calabi-Yau varieties and mirror symmetry, 2003
37 Panos Pardalos and Henry Wolkowicz, Editors, Novel approaches to hard discrete optimization, 2003
36 Shigui Ruan, Gail S. K. Wolkowicz, and Jianhong Wu, Editors, Dynamical systems and their applications in biology, 2003
35 Yakov Eliashberg, Boris Khesin, and François Lalonde, Editors, Symplectic and contact topology: Interactions and perspectives, 2003
34 T. J. Lyons and T. S. Salisbury, Editors, Numerical methods and stochastics, 2002
31 A. Galves, J. K. Hale, and C. Rocha, Editors, Differential equations and dynamical systems, 2002
30 Roberto Longo, Editor, Mathematical physics in mathematics and physics: Quantum and operator algebraic aspects, 2001
29 Teresa Faria and Pedro Freitas, Editors, Topics in functional differential and difference equations, 2001
28 David R. McDonald and Stephen R. E. Turner, Editors, Analysis of communication networks: Call centres, traffic and performance, 2000
27 Shui Feng and Anna T. Lawniczak, Editors, Hydrodynamic limits and related topics, 2000
26 Neal Madras, Editor, Monte Carlo methods, 2000

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
The papers in this volume reflect a broad spectrum of current research activities on the theory and applications of nonlinear dynamics and evolution equations. They are based on lectures given during the International Conference on Nonlinear Dynamics and Evolution Equations at Memorial University of Newfoundland, St. John's, NL, Canada, July 6–10, 2004. This volume contains thirteen invited and refereed papers. Nine of these are survey papers, introducing the reader to, and describing the current state of the art in major areas of dynamical systems, ordinary, functional and partial differential equations, and applications of such equations in the mathematical modelling of various biological and physical phenomena. These papers are complemented by four research papers that examine particular problems in the theory and applications of dynamical systems.