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Preface

Lie algebras and their representations form an extremely rich and important
field of mathematics. This area can sometimes be technically abstract, but is also
well known for its connections and applications to many other disciplines such as
geometry, topology, mathematical physics, and algebraic combinatorics.

The interplay between algebra and geometry goes both ways. One uses geo-
metric methods to construct or gain insight on representations of Lie groups and
Lie algebras. The best known examples in this direction include the Borel-Weil-
Bott construction, Springer theory of Weyl group representations, Kazhdan-Lusztig
theory for category O, and Nakajima and Lusztig quiver variety realizations of Kac-
Moody algebras and their representations. On the other hand, one is often able to
use the representation theory of semisimple or affine Lie algebras to organize and
better understand the geometric invariants (such as homology) of various interest-
ing varieties, such as Hilbert schemes, flag varieties, and affine Grassmannians. In
addition, geometric representation theory has been found to be intimately related
to the combinatorics of crystals and quivers.

Within the theory of Kac-Moody algebras, it is the finite-dimensional and affine
Lie algebras that stand out, not only for their well-developed representation the-
ory, but also for applications to number theory, combinatorics, and mathematical
physics. Extended affine Lie algebras are a class of Lie algebras that encompasses
these two important types of Lie algebras, as well as toroidal Lie algebras. The
structure theory of extended affine Lie algebras (sometimes jokingly called Cana-
dian algebras by friends) has just recently been completed, as the culmination of
the last decade of work of a number of researchers, many of them Canadian.

It was before such a background that the University of Ottawa hosted a summer
school in “Geometric Representation Theory and Extended Affine Lie Algebras”,
on June 15–27, 2009. The summer school was followed by a week-long conference
on the same general area of representation theory. There were 3 lecture series in
each of the two weeks of summer school, with one and half an hour lecture per
weekday. These lecture series were as follows:

(i) Introduction to geometric representation theory, by Joel Kamnitzer.
(ii) Introduction to quantum groups and crystals, by Seok-Jin Kang.
(iii) Geometric realizations of crystals, by Alistair Savage.
(iv) Nilpotent orbits and finite W -algebras, by Weiqiang Wang.
(v) Affine, toroidal and extended affine Lie algebras, by Erhard Neher.
(vi) Representation theory of affine and toroidal Lie algebras, by Vyjayanthi

Chari.

In his lectures, Kamnitzer explains three distinct geometric approaches of con-
structing irreducible rational representations of the Lie group GLn, namely, the
Borel-Weil construction, the Ginzburg construction, and the geometric Satake cor-
respondence. While each of the approaches generalizes to more general semisimple
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vi Preface

or reductive Lie groups, the focus on type A helps to make things explicit and avoid
introducing Langlands dual groups and further deeper geometric objects such as
Nakajima quiver varieties.

Kang starts his lectures by reviewing the basics of crystal basis theory. He then
continues to describe the theory of perfect crystals which has played an important
role in providing a realization of crystals for irreducible integrable modules of quan-
tum affine algebras. In the case of level one integrable modules, a combinatorial
approach to crystals using Young walls is explained in the end.

Like the semisimple Lie algebras, extended affine Lie algebras admit root space
decompositions. The associated root systems can be understood and studied in the
framework of affine reflection systems, which, roughly speaking, consist of finite
root systems together with additional extension data. The structure theory of
extended affine Lie algebras serves as a good example of the unity of mathematics:
One needs all the important classes of non-associative algebras to describe their
structure (alternative algebras, Jordan algebras and structurable algebras). Neher’s
lectures provide a detailed exposition of the structure theory, and they complement
Chari’s lectures on representations.

Savage’s lectures on realizations of crystals are geometric in nature, in contrast
to the algebraic approach taken by Kang. The main geometric objects involved
are partial flag manifolds, and Lusztig and Nakajima quiver varieties. The crystal
graph corresponds to the set of irreducible components of these (or closely related)
varieties. Along the way, the basics of quiver representations are also introduced.
In the end, Savage describes the relationship between the geometric realization and
combinatorial realization via tableaux.

The category of positive level integrable modules of affine Lie algebras with
finite-dimensional weight spaces is semisimple and the irreducibles satisfy the Weyl-
Kac character formula. Chari’s lectures focus on the finite-dimensional level zero
modules of the loop algebras. The category of such modules is not semisimple,
and homological algebra and quivers have come to play an increasingly important
role recently. Some important constructions such as Weyl modules are motivated
through their connections to quantum affine algebras.

Finite W -algebras, which appeared as a counterpart to the affine W -algebras in
the 1990’s, are certain highly nonlinear algebras resulting from a (quantum) hamil-
tonian reduction. Alternatively, finite W -algebras over the complex numbers can
be regarded as a quantization of Slodowy slices, i.e., transversal slices to nilpotent
orbits for semisimiple Lie algebras. Finite W -algebras in prime characteristic also
arise naturally in Premet’s solution to the Kac-Weisfeiler conjecture for modular
representations of Lie algebras. Wang’s lectures provide an overview of some basic
aspects of the structure and representation theory of finite W -algebras and their
super generalizations.

More than 130 participants from 14 different countries took part in the summer
school. In addition to many Canadian students, a particularly strong contingent
of students came from Korea and, of course, the United States. We gratefully
acknowledge the generous financial support of The Fields Institute for Research in
the Mathematical Sciences (Canada) and the National Science Foundation (USA).
We thank the University of Ottawa for providing excellent facilities for the summer
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school, and all the lecture series speakers for their fine contributions. We also thank
all the participants for their active participation which made the summer school
(and the workshop) such a success. Finally, we would like to thank the staff of the
Fields Institute, particularly Debbie Iscoe, for their help in the preparation of this
book.

Erhard Neher
Alistair Savage
Weiqiang Wang
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crystal basis, 28, 30
crystal graph, 28, 49

crystal operator, 49
crystal operators, 49
current algebra, 188

Der (Lie algebra of derivations), 108
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degree map, 158
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E(L,ψ) (central extension), 116
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EARS (extended affine root system), 142
EALA (extended affine Lie algebra), 120
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evaluation map, 159, 165, 166
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extension, 115
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n ] (Laurent polynomials, n vari-
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fundamental class, 49
fundamental weight, 47
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g (split simple Lie algebra), 108
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Gabriel’s Theorem, 52, 64
geometric Langlands program, 1

geometric Satake correspondence, 1, 12, 15,
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Howe duality, 17
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i-string decomposition, 28, 30
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Kac’s Theorem, 53
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Langlands dual group, 1
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Lie algebra, 21

centreless, 108

extension, 115

perfect, 108

simple, 21

toroidal, 113

triangular decomposition, 53

Lie superalgebra

basic classical, 99

queer, 100

restricted, 99

Lie torus, 145–156, 162, 164–166

graded-isomorphism, 146, 153–156, 164

invariant, 145, 153, 155–157, 162–166

of type, 145

line bundle, 6

linked, 187

locally

finite, 171

finite-dimensional, 172

nilpotent, 121, 179

long, 132

loop, 50

loop algebra, 110, 176

twisted, 110, 176

untwisted, 110

Lusztig quiver variety, 56

maximal compact subgroup, 2

maximal spectrum, 184

maximal torus, 3

maximal vector, 28

Mirkovic-Vilonen cycles, 14

module, 22

Artinian, 174

Demazure, 189

evaluation, 183

highest weight, 25, 27, 172, 180, 190

integrable, 179–182, 187, 188

irreducible, 22

KR, 190

loop, 181

projective, 174, 190

Verma, 25, 27, 172

weight, 171, 175, 178, 179

Weyl, 175, 186, 187, 190

global, 188

local, 189, 190

moment map, 55

multiloop algebra, 112, 127, 156, 162

Nakajima quiver variety, 59

nilpotent (quiver representation), 56

nondegenerate, 109

null root, 121

nullity, 121, 129
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orientation, 55

ψD (2-cocycle), 118
p-character, 100

partial flag variety, 10
partition, 47

path, 50
length, 50

trivial, 50
path algebra, 51

path realization, 36
perfect, 108

perfect crystal, 34
perverse sheaves, 15

Poincaré-Birkhoff-Witt Theorem, 22
pointed, 136

polynomial representation, 5

primitive ideal, 104
projective variety, 6

pyramid, 89, 91
even, 90, 96

symmetric, 92

quantum affine algebra, 33
quantum group, 26

quantum torus, 154, 156, 162
quiver, 50

so16, 59
affine type, 50

double, 55, 59, 63
finite, 50

finite type, 50

indefinite type, 50
Jordan, 51

orientation, 55
representation, 51

tame type, 50
type An, 51

type D8, 59
underlying graph, 52

wild type, 50
quiver representation

direct sum, 52, 65
graded dimension, 51

indecomposable, 52, 53
invariant subspace, 52

irreducible, 52
morhpism, 51

nilpotent, 56

simple, 52
subrepresentation, 52

trivial, 52
quiver variety, 1

for sl2, 60
for sln, 60

for adjoint representation of sl3, 61
for adjoint representation of sln, 61

lagrangian Nakajima, 59
Lusztig, 56

quotient root system, 137–139, 142, 144, 149

R (set of roots of an EALA), 121

R0 (null roots), 121, 129
Ran (anisotropic roots), 121, 129

Re(R) (real part of an affine reflection sys-
tem), 131, 133

reduced, 124, 129, 131, 133, 136, 138, 142,
144, 147

reduced enveloping superalgebra, 100
reflection, 129

reflection subspace, 136
pointed, 136, 139–141, 143, 148

symmetric, 136–141, 148
reflection system

affine, 129–144

regular nilpotent, 74, 80, 86, 104, 105
representation, 22

integrable highest weight irreducible, 58
representation of a quiver, 51

restricted dual, 180
root, 47

anisotropic, 121
divisible, 132

imaginary, 53
indivisible, 132, 136

long, 132

null, 121
short, 132

root space, 120
decomposition, 120

root space decomposition, 47
root string, 138, 142, 143

unbroken, 142
root system

affine, 133–135, 139
finite, 131–132, 138, 139, 144

reduced, 124, 131, 133, 136, 144, 147

simply laced, 132

Sdiv (divisible roots of S), 132

Sind (indivisible roots of S), 132
Slg (long roots of S), 132

Ssh (short roots of S), 132
slN (A) (special linear Lie algebra with coor-

dinates A), 151

S(β, α) (α-root string through β), 138
sln, 46, 47, 49, 55, 63

sl2-triple, 74, 77, 101
Γ-graded, 83

sα (reflection in α), 129
SCDer (skew centroidal derivations), 163

Schubert cell, 14

Schur duality, 73, 96
higher level, 97

self-centralizing, 120
semisimple, 3, 4

short, 132
simple representation of a quiver, 52
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simple root, 47
simply laced, 132

skew-symmetric, 109

Skryabin equivalence, 72, 88, 98

Slodowy slice, 82, 84

source, 50

split extension, 117
Springer fiber, 47

Springer fibre, 1, 10

stability condition, 59, 66

stable point (of a quiver variety), 59, 66

subalgebra

Cartan, 123

diagonalizable, 120
self-centralizing, 120

toral, 120

subspace

graded, 109

superalgebra module

type M, 100
type Q, 100

support, 109, 145

symmetric, 136

symmetric power, 2, 4, 5

tα (element of H representing α), 121

tableaux

semistandard, 47
weight, 47

tableaux-Young diagram correspondence, 67

tame, 121, 138, 142–144, 151

tame type, 50

target, 50

toral subalgebra, 120
toroidal Lie algebra, 113

torus, 3

associative, 152–155, 161, 163

Lie, see also Lie torus

quantum, see also quantum torus

triangular decomposition, 24, 26, 53, 58

trivial path, 50
trivial representation of a quiver, 52

twisted group algebra, 153, 161

twisted loop algebra, 110

U−
q (g), 58

underlying graph, 50

underlying graph of a quiver, 52
universal 2-cocycle, 113

universal central extension, 111, 113, 116–
120, 149, 156, 165

universal enveloping algebra, 22

quantized, 26

untwisted

affine reflection system, 133

loop algebra, 110
multiloop algebra, 112, 127, 156

Verma flag, 174

Verma module, 58
vertex, 50
Virasoro algebra, 116
Vust duality, 96

W -algebra, 71, 79–81, 92, 96
super, 99

W (.) (Weyl group of .), 131
weight, 170, 171, 177, 179, 180, 190

lattice, 178
space, 172, 180, 181

weight lattice, 3, 47
weight space decomposition, 47
Weyl group, 131, 170, 180, 191

affine, 178
Weyl-Kac character formula, 25
Whittaker functor, 88
Whittaker module, 87

Whittaker vector, 79, 87
wild type, 50
Witt algebra, 115, 116, 163

Young pyramid, 70
Young diagram, 66
Young diagram-tableaux correspondence, 67
Young pyramid, 69
Young wall, 41, 68, 69

proper, 41
reduced, 42

Z(.) (the centre of a Lie algebra), 108
Z-grading, 74

Dynkin, 75, 76

even, 79
good, 75, 82, 89, 91, 101
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Lie theory has connections to many other disciplines such as geometry, number theory, 
mathematical physics, and algebraic combinatorics. The interaction between algebra, 
geometry and combinatorics has proven to be extremely powerful in shedding new light 
on each of these areas.

This book presents the lectures given at the Fields Institute Summer School on Geometric 
Representation Theory and Extended Affi ne Lie Algebras held at the University of Ottawa 
in 2009. It provides a systematic account by experts of some of the exciting developments 
in Lie algebras and representation theory in the last two decades. It includes topics such 
as geometric realizations of irreducible representations in three different approaches, 
combinatorics and geometry of canonical and crystal bases, fi nite W -algebras arising as 
the quantization of the transversal slice to a nilpotent orbit, structure theory of extended 
affi ne Lie algebras, and representation theory of affi ne Lie algebras at level zero.

This book will be of interest to mathematicians working in Lie algebras, and to graduate 
students interested in learning the basic ideas of some very active research directions. 
The extensive references in the book will be helpful to guide non-experts to the original 
sources.
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