Perspectives on Noncommutative Geometry

Masoud Khalkhali
Guoliang Yu
Editors
Perspectives on Noncommutative Geometry
Perspectives on Noncommutative Geometry

Masoud Khalkhali
Guoliang Yu
Editors
The Fields Institute for Research in Mathematical Sciences

The Fields Institute is a center for mathematical research, located in Toronto, Canada. Our mission is to provide a supportive and stimulating environment for mathematics research, innovation and education. The Institute is supported by the Ontario Ministry of Training, Colleges and Universities, the Natural Sciences and Engineering Research Council of Canada, and seven Ontario universities (Carleton, McMaster, Ottawa, Toronto, Waterloo, Western Ontario, and York). In addition there are several affiliated universities in both Canada and the United States, and five Corporate Affiliate Members (Algorithmics, General Motors, QWeMA Group Inc., R2 Financial Technologies Inc., and Sigma Analysis and Management).

Fields Institute Editorial Board: Carl R. Riehm (Managing Editor), Edward Bierstone (Director of the Institute), Matthias Neufang (Deputy Director of the Institute), James G. Arthur (Toronto), Kenneth R. Davidson (Waterloo), Lisa Jeffrey (Toronto), Barbara Lee Keyfitz (Ohio State), Thomas S. Salisbury (York), Juris Steprans (York University), Noriko Yui (Queen’s).

2000 Mathematics Subject Classification. Primary 58B34; Secondary 19D55, 16T05, 18G30.

Library of Congress Cataloging-in-Publication Data
Perspectives on noncommutative geometry / Masoud Khalkhali, Guoliang Yu, editors.
 p. cm. — (Fields Institute Communications)
 Includes bibliographical references.
 512.55—dc23
 2011032554

Copying and reprinting. Material in this book may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)

© 2011 by the American Mathematical Society. All rights reserved.

The American Mathematical Society retains all rights except those granted to the United States Government.

Copyright of individual articles may revert to the public domain 28 years after publication. Contact the AMS for copyright status of individual articles.

Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

This publication was prepared by the Fields Institute.

http://www.fields.utoronto.ca

Visit the AMS home page at http://www.ams.org/

10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>vii</td>
</tr>
<tr>
<td>Local Index Theorem for Projective Families</td>
<td>1</td>
</tr>
<tr>
<td>Moulay-Tahar Benameur and Alexander Gorokhovsky</td>
<td></td>
</tr>
<tr>
<td>Type III KMS States on a Class of C^*-Algebras Containing O_n and Q_N and Their Modular Index</td>
<td>29</td>
</tr>
<tr>
<td>Alan L. Carey, John Phillips, Ian F. Putnam, and Adam Rennie</td>
<td></td>
</tr>
<tr>
<td>Duality, Correspondences and the Lefschetz Map in Equivariant KK-Theory: A Survey</td>
<td>41</td>
</tr>
<tr>
<td>Heath Emerson</td>
<td></td>
</tr>
<tr>
<td>Twisted Spectral Triples and Connes’ Character Formula</td>
<td>79</td>
</tr>
<tr>
<td>Farzad Fathizadeh and Masoud Khalkhal</td>
<td></td>
</tr>
<tr>
<td>Spectral Morphisms, K-Theory, and Stable Ranks</td>
<td>103</td>
</tr>
<tr>
<td>Bogdan Nica</td>
<td></td>
</tr>
<tr>
<td>A Survey of Braided Hopf Cyclic Cohomology</td>
<td>117</td>
</tr>
<tr>
<td>Arash Pourkia</td>
<td></td>
</tr>
<tr>
<td>A Survey on Rankin-Cohen Deformations</td>
<td>133</td>
</tr>
<tr>
<td>Richard Rochberg, Xiang Tang, and Yi-Jun Yao</td>
<td></td>
</tr>
<tr>
<td>Pseudo-Differential Operators and Regularity of Spectral Triples</td>
<td>153</td>
</tr>
<tr>
<td>Otgonbayar Uuye</td>
<td></td>
</tr>
</tbody>
</table>
Preface

During May 27–31, 2008, the Noncommutative Geometry Workshop was held at the Fields Institute as part of the thematic program on operator algebras. This was the second major conference on the subject organized at the Fields Institute, the first being in 1995. It was interesting to appreciate how much the subject has progressed between these two events. The present volume consists primarily of articles by speakers in this workshop.

Roughly speaking, noncommutative geometry concerns itself with the study of noncommutative spaces. These ‘spaces’ are usually represented by a noncommutative algebra that replaces the coordinate algebra in the commutative case. Examples include highly singular spaces such as the space of leaves of a foliation, the unitary dual of a noncompact group, and more generally, ‘bad quotients’ of classical spaces.

Initiated and pioneered by Alain Connes since 1980, in its initial stage noncommutative geometry was mostly inspired by global analysis, topology, operator algebras, and quantum physics, as they show up in areas such as index theory, foliation theory, and quantum statistical mechanics. Its main applications were to settle some long standing conjectures such as the Novikov conjecture, and the Baum-Connes conjecture in topology and analysis. The main tools here are cyclic cohomology, K-theory and K-homology, and KK-theory. Next came the impact of spectral geometry and the way the spectrum of a geometric operator like the Laplacian informs us about the geometry and topology of a manifold, as in the celebrated Weyl’s law. This is now subsumed and vastly generalized through Connes’ notion of spectral triples, which is a centerpiece of noncommutative Riemannian geometry and applications of noncommutative geometry to particle physics. Finally, in recent years we have witnessed the impact of number theory, algebraic geometry, and the theory of motives and quantum field theory on noncommutative geometry, and a strong interaction between these areas is gradually emerging. All these aspects of the field were reflected and touched upon in lectures by the invited speakers at the workshop.

During the workshop, Alain Connes delivered his Fields Institute Distinguished Lectures Series. He gave a series of three lectures on the frontiers of research in the subject, with titles The spectral characterization of manifolds, A CKM invariant in Riemannian geometry, and About the field with one element. The reader can refer to the web page\(^1\) of the Fields Institute for abstracts of these lectures.

We would like to thank Carl Riehm and Debbie Iscoe of Fields Institute Publications for their patience and professional assistance. We also thank all the contributors for their contributions. It is a pleasure to thank George Elliott for supporting the original idea of a workshop on noncommutative geometry during the Fields Institute thematic program on operator algebras. The workshop was financially

\(^1\)http://www.fields.utoronto.ca/programs/scientific/07-08/noncommutative/
supported by the Fields Institute and the NSF, and we would like to thank both institutions for their support. It is a pleasure to thank Arthur Greenspoon for checking the entire manuscript and suggesting many improvements. Finally we would like to warmly thank Matilde Marcolli who coorganized this workshop with us.

Masoud Khalkhali, University of Western Ontario, Canada
Guoliang Yu, Vanderbilt University, USA
Titles in This Series

61 Masoud Khalkhali and Guoliang Yu, Editors, Perspectives on noncommutative geometry, 2011
60 Alina-Carmen Cojocaru, Kristin Lauter, Rachel Pries, and Renate Scheidler, Editors, WIN—Women in numbers: Research directions in number theory, 2011
59 Erhard Neher, Alistair Savage, and Weiqiang Wang, Editors, Geometric representation theory and extended affine Lie algebras, 2011
58 V. Kumar Murty, Editor, Algebraic curves and cryptography, 2010
57 Siv Sivaloganathan, Editor, New perspectives in mathematical biology, 2010
56 Rob de Jeu and James D. Lewis, Editors, Motives and algebraic cycles: A celebration in honour of Spencer J. Bloch, 2009
55 Panos M. Pardalos and Thomas F. Coleman, Editors, Lectures on global optimization, 2009
54 Noriko Yui, Helena Verrill, and Charles F. Doran, Editors, Modular forms and string duality, 2008
53 Mikhail Lyubich and Michael Yampolsky, Editors, Holomorphic dynamics and renormalization: A volume in honour of John Milnor’s 75th birthday, 2008
51 Giovanni Forni, Mikhail Lyubich, Charles Pugh, and Michael Shub, Editors, Partial hyperbolic dynamics, laminations, and Teichmüller flow, 2007
50 Ilia Binder and Dirk Kreimer, Editors, Universality and renormalization, 2007
49 Wayne Nagata and N. Sri Namachchivaya, Editors, Bifurcation theory and spatio-temporal pattern formation, 2006
48 Hermann Brunner, Xiao-Qiang Zhao, and Xingfu Zou, Editors, Nonlinear dynamics and evolution equations, 2006
46 Thierry Passot, Catherine Sulem, and Pierre-Louis Sulem, Editors, Topics in kinetic theory, 2005
45 Ragnar-Olaf Buchweitz and Helmut Lenzing, Editors, Representations of algebras and related topics, 2005
44 Lajos Horváth and Barbara Szyszkowicz, Editors, Asymptotic methods in stochastics, 2004
43 George Janelidze, Bodo Pareigs, and Walter Tholen, Editors, Galois theory, Hopf algebras, and semiabelian categories, 2004
42 Saber Elaydi, Gerry Ladas, Jianhong Wu, and Xingfu Zou, Editors, Difference and differential equations, 2004
41 Alf van der Poorten and Andreas Stein, Editors, High primes and misdemeanours: Lectures in honour of the 60th birthday of Hugh Cowie Williams, 2004
40 Vlastimil Dlab and Claus Michael Ringel, Editors, Representations of finite dimensional algebras and related topics in Lie theory and geometry, 2004
39 Stephen Berman, Yuly Billig, Yi-Zhi Huang, and James Lepowsky, Editors, Vector operator algebras in mathematics and physics, 2003
38 Noriko Yui and James D. Lewis, Editors, Calabi-Yau varieties and mirror symmetry, 2003
37 Panos Pardalos and Henry Wolkowicz, Editors, Novel approaches to hard discrete optimization, 2003
36 Shigui Ruan, Gail S. K. Wolkowicz, and Jianhong Wu, Editors, Dynamical systems and their applications in biology, 2003
35 Yakov Eliashberg, Boris Khesin, and François Lalonde, Editors, Symplectic and contact topology: Interactions and perspectives, 2003
34 T. J. Lyons and T. S. Salisbury, Editors, Numerical methods and stochastics, 2002
TITLES IN THIS SERIES

31 A. Galves, J. K. Hale, and C. Rocha, Editors, Differential equations and dynamical systems, 2002
30 Roberto Longo, Editor, Mathematical physics in mathematics and physics: Quantum and operator algebraic aspects, 2001
29 Teresa Faria and Pedro Freitas, Editors, Topics in functional differential and difference equations, 2001
28 David R. McDonald and Stephen R. E. Turner, Editors, Analysis of communication networks: Call centres, traffic and performance, 2000
27 Shui Feng and Anna T. Lawniczak, Editors, Hydrodynamic limits and related topics, 2000
26 Neal Madras, Editor, Monte Carlo methods, 2000
23 Myrna H. Wooders, Editor, Topics in mathematical economics and game theory. Essays in honor of Robert J. Aumann, 1999
22 Graciela Chichilnisky, Editor, Topology and markets, 1999
21 Shigui Ruan, Gail S. K. Wolkowicz, and Jianhong Wu, Editors, Differential equations with applications to biology, 1998
20 Peter A. Fillmore and James A. Mingo, Editors, Operator algebras and their applications II, 1998
19 William G. Dwyer, Stephen Halperin, Richard Kane, Stanley O. Kochman, Mark E. Mahowald, and Paul S. Selick (Editor-in-Chief), Editors, Stable and unstable homotopy, 1998
18 Panos M. Pardalos and Henry Wolkowicz, Editors, Topics in semidefinite and interior-point methods, 1998
17 Joachim J. R. Cuntz and Masoud Khalkhali, Editors, Cyclic cohomology and noncommutative geometry, 1997
16 Victor P. Snaith, Editor, Algebraic K-theory, 1997
13 Peter A. Fillmore and James A. Mingo, Editors, Operator algebras and their applications, 1997
12 Dan-Virgil Voiculescu, Editor, Free probability theory, 1997
11 Colleen D. Cutler and Daniel T. Kaplan, Editors, Nonlinear dynamics and time series: Building a bridge between the natural and statistical sciences, 1997
10 Jerrold E. Marsden, George W. Patrick, and William F. Shadwick, Editors, Integration algorithms and classical mechanics, 1996
8 Larry M. Bates and David L. Rod, Editors, Conservative systems and quantum chaos, 1996

For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/.
This volume represents the proceedings of the Noncommutative Geometry Workshop that was held as part of the thematic program on operator algebras at the Fields Institute in May 2008.

Pioneered by Alain Connes starting in the late 1970s, noncommutative geometry was originally inspired by global analysis, topology, operator algebras, and quantum physics. Its main applications were to settle some long-standing conjectures, such as the Novikov conjecture and the Baum-Connes conjecture.

Next came the impact of spectral geometry and the way the spectrum of a geometric operator, like the Laplacian, holds information about the geometry and topology of a manifold, as in the celebrated Weyl law. This has now been vastly generalized through Connes’ notion of spectral triples.

Finally, recent years have witnessed the impact of number theory, algebraic geometry and the theory of motives, and quantum field theory on noncommutative geometry. Almost all of these aspects are touched upon with new results in the papers of this volume.

This book is intended for graduate students and researchers in both mathematics and theoretical physics who are interested in noncommutative geometry and its applications.